Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Molecules ; 28(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838643

RESUMO

The presented work shows the antibacterial activity of TiO2 photocatalysts modified by 3-aminopropyltriethoxysilane (APTES). The APTES-functionalized TiO2 samples were obtained by the solvothermal process followed by calcination. The antibacterial activity of APTES/TiO2 samples was evaluated with two species of bacteria, Escherichia coli and Staphylococcus epidermidis, under artificial solar light (ASL) irradiation. The used bacteria are model organisms characterized by negative zeta potential (approx. -44.2 mV for E. coli and -42.3 mV for S. epidermidis). For the first time, the antibacterial properties of APTES-functionalized TiO2 were evaluated against mono- and co-cultured bacteria. The high antibacterial properties characterized the obtained APTES-modified nanomaterials. The best antibacterial properties were presented in the TiO2-4 h-120 °C-300 mM-Ar-300 °C sample (modified with 300 mM of APTES and calcined at 300 °C). The improvement of the antibacterial properties was attributed to a positive value of zeta potential, high surface area, and porous volume.


Assuntos
Escherichia coli , Staphylococcus epidermidis , Escherichia coli/efeitos da radiação , Técnicas de Cocultura , Catálise , Titânio/efeitos da radiação , Antibacterianos
2.
Langmuir ; 38(43): 13288-13295, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36269033

RESUMO

Selectivity of ion exchangers is an important topic in adsorption science owing to its specific application in resource recovery and environmental remediation. In this study, the cation exchange property of the submillimeter-sized five-coordinate K2Ti2O5 (KTO) crystals is demonstrated. Adsorption isotherm measurements were performed on KTO crystals ion-exchanged with alkali metal cations including Li+, Na+, Rb+, and Cs+. The maximum adsorption amounts of Li+, Na+, Rb+, and Cs+ on KTO were 2.70, 1.15, 0.59, and 0.42 mmol g-1, respectively, which is contradictory to the "normal" selectivity sequence (Cs+ > Rb+ > K+ > Na+ > Li+) of conventional ion exchangers, including clays and organic resins. The Kielland plots for the Li+ and Cs+ exchange experiments showed preferential Li+ adsorption on KTO, which supports the high Li+ selectivity. The interlayer distance for M+-exchanged KTO (M = Li, Na, Rb, and Cs) was dependent on cation type. Raman and X-ray absorption near-edge structure spectroscopic analyses of the KTO samples indicated that certain Ti species in KTO underwent hydrolysis, and thereby formed hydroxyl groups on the KTO surface during ion exchange. The origin of the high Li+ selectivity of KTO is discussed herein based on experimental characterization results.

3.
Chemistry ; 26(11): 2297, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31998993

RESUMO

Invited for the cover of this issue is Tetsuya Yamada, Ken-ichi Katsumata and co-workers at Tokyo Institute of Technology and Tokyo University of Science. The image depicts rust producing hydrogen and purifying the pollutants at the same time by photocatalytic reaction. Read the full text of the article at 10.1002/chem.201903642.

4.
Chemistry ; 26(11): 2380-2385, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31702078

RESUMO

Solar-driven catalysts on semiconductors to produce hydrogen are considered as a means to solve environmental issues. In this study, H2 production coupling with oxygen consumption by noble metal-free α-FeOOH was demonstrated even though the conduction band edge was lower than the reduction potential of H+ to H2 . For activation of α-FeOOH, an electron donor, Hg-Xe irradiation, and low pH (ca. 5) were indispensable factors. The H2 production from H2 O was confirmed by GC-MS using isotope-labeled water (D2 O) and deuterated methanol. The α-FeOOH synthesized by coprecipitation method showed 25 times more active than TiO2 . The photocatalytic activity was stable for over 400 h. Our study suggests that α-FeOOH known as rust can produce H2 by light induction.

5.
Nanotechnology ; 29(28): 285705, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29697053

RESUMO

Cobalt oxide is a transition metal oxide, well studied as an electrode material for energy storage applications, especially in supercapacitors and rechargeable batteries, due to its high charge storage ability. However, it suffers from low conductivity, which effectively hampers its long-term stability. In the present work, a simple strategy to enhance the conductivity of cobalt oxide is adopted to achieve stable electrochemical performance by means of carbon coating and Mn doping, via a simple and controlled, urea-assisted glycine-nitrate combustion process. Structural analysis of carbon coated Mn-doped Co3O4 (Mn-Co3O4@C) confirms the formation of nanoparticles (∼50 nm) with connected morphology, exhibiting spinel structure. The Mn-Co3O4@C electrode displays superior electrochemical performance as a Li-ion battery anode, delivering a specific capacity of 1250 mAh g-1. Mn-Co3O4@C demonstrates excellent performance in terms of long-term stability, keeping charge storage ability intact even at high current rates due to the synergistic effects of fast kinetics-provided by enriched electronic conductivity, which allows ions to move freely to active sites and electrons from reaction sites to substrate during redox reactions-and high surface area combined with mesoporous architecture. The fully assembled battery device using Mn-Co3O4@C and standard LiCoO2 electrode shows 90% capacity retention over 100 cycles.

6.
Molecules ; 23(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486392

RESUMO

There is a need for highly efficient photocatalysts, particularly for water purification. In this study, we fabricated a mesoporous TiO2 thin film on a boron-doped diamond (BDD) layer by a surfactant-assisted sol-gel method, in which self-assembled amphiphilic surfactant micelles were used as an organic template. Scanning electron microscopy revealed uniform mesopores, approximately 20 nm in diameter, that were hexagonally packed in the TiO2 thin film. Wide-angle X-ray diffraction and Raman spectroscopy clarified that the framework crystallized in the anatase phase. Current⁻voltage (I⁻V) measurements showed rectification features at the TiO2/BDD heterojunction, confirming that a p⁻n hetero-interface formed. The as-synthesized mesoporous TiO2/BDD worked well as a photocatalyst, even with a small volume of TiO2 (15 mm × 15 mm × c.a. 1.5 µm in thickness). The use of deep UV light (λ = 222 nm) as a light source was necessary to enhance photocatalytic activity, due to photo-excitation occurring in both BDD and TiO2.


Assuntos
Boro/química , Diamante/química , Processos Fotoquímicos , Titânio/química , Raios Ultravioleta , Catálise , Porosidade
7.
Phys Chem Chem Phys ; 19(6): 4648-4655, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28124693

RESUMO

We demonstrate the dual advantages of graded photoabsorbers in mesoporous metal oxide-based hetero interfacial photoanodes in improving photogenerated charge carrier (e-/h+) separation for the solar light-driven water-oxidation process. The pre-deposition of sol-gel-derived, tungsten-doped bismuth vanadate (W:BiVO4) onto a primary BiVO4 water oxidation layer forms graded interfaces, which facilitate charge transfer from the primary photoabsorber to the charge transport layer, thereby superseding the thickness-controlled charge recombination at the BiVO4 water oxidation catalyst. As a result, the WO3/BiVO4 hetero photoanode containing the photoactive W:BiVO4 interfacial layer showed 130% higher photocurrent than that of the interfacial layer-free hetero photoelectrode owing to the enhanced charge separation led water oxidation process.

8.
Photochem Photobiol Sci ; 15(8): 988-94, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27381096

RESUMO

The inactivation of Escherichia coli and Qß phage was examined following their photocatalytic treatment with TiO2 hollows and spheres that had been prepared by electrospray, hydrothermal treatment, and calcination. The crystal structures of the hollows and spheres were assigned to TiO2 anatase, and the surface areas of the hollows and spheres were determined to be 91 and 79 m(2) g(-1), respectively. Interestingly, TiO2 spheres exhibited higher anti-pathogen performance than TiO2 hollows, a difference we ascribe to the prevention of light multi-scattering by microorganisms covering the surfaces of the TiO2 particles. The photocatalytic decomposition of dimethyl sulfoxide (DMSO) in the presence of TiO2 hollows and spheres was examined in order to study the dependence of photocatalytic activity on TiO2 morphology for the size scale of the reactants. TiO2 hollows provided greater photocatalytic decomposition of DMSO than did TiO2 spheres, in contrast to the pattern seen for pathogen inactivation. Fabrication of photocatalysts will need to vary depending on what substance (e.g., organic compound or biological agent) is being targeted for environmental remediation.


Assuntos
Luz , Nanopartículas Metálicas/química , Titânio/química , Allolevivirus/efeitos dos fármacos , Catálise , Dimetil Sulfóxido/química , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura , Azul de Metileno/química , Microscopia Eletrônica de Varredura , Espectrofotometria Ultravioleta , Difração de Raios X
9.
Phys Chem Chem Phys ; 17(29): 19371-8, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26143888

RESUMO

The interaction strength of Au nanoparticles with pristine and nitrogen doped TiO2 nanowire surfaces was analysed using density functional theory and their significance in enhancing the solar driven photoelectrocatalytic properties was elucidated. In this article, we prepared 4-dimethylaminopyridine capped Au nanoparticle decorated TiO2 nanowire systems. The density functional theory calculations show {101} facets of TiO2 as the preferred phase for dimethylaminopyridine-Au nanoparticles anchoring with a binding energy of -8.282 kcal mol(-1). Besides, the interaction strength of Au nanoparticles was enhanced nearly four-fold (-35.559 kcal mol(-1)) at {101} facets via nitrogen doping, which indeed amplified the Au nanoparticle density on nitrided TiO2. The Au coated nitrogen doped TiO2 (N-TiO2-Au) hybrid electrodes show higher absorbance owing to the light scattering effect of Au nanoparticles. In addition, N-TiO2-Au hybrid electrodes block the charge leakage from the electrode to the electrolyte and thus reduce the charge recombination at the electrode/electrolyte interface. Despite the beneficial band narrowing effect of nitrogen in TiO2 on the electrochemical and visible light activity in N-TiO2-Au hybrid electrodes, it results in low photocurrent generation at higher Au NP loading (3.4 × 10(-7) M) due to light blocking the N-TiO2 surface. Strikingly, even with a ten-fold lower Au NP loading (0.34 × 10(-7) M), the synergistic effects of nitrogen doping and Au NPs on the N-TiO2-Au hybrid system yield high photocurrent compared to TiO2 and TiO2-Au electrodes. As a result, the N-TiO2-Au electrode produces nearly 270 µmol h(-1) cm(-2) hydrogen, which is nearly two-fold higher than the pristine TiO2 counterpart. The implications of these findings for the design of efficient hybrid photoelectrocatalytic electrodes are discussed.

10.
Phys Chem Chem Phys ; 16(19): 8751-60, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24675975

RESUMO

Since the report of the Honda-Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir-Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct-indirect (D-I) kinetic model were reviewed and compared. Some applications of the D-I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.


Assuntos
Termodinâmica , Catálise , Cinética , Processos Fotoquímicos , Semicondutores
11.
Phys Chem Chem Phys ; 16(39): 21237-42, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25199593

RESUMO

We report simultaneous photoelectrocatalytic (PEC) glucose sensing and biohydrogen generation for the first time from the direct PEC oxidation of glucose at multifunctional and robust Cu2O-TiO2 photocatalysts. Striking improvement of 30% in overall H2 gas evolution (∼122 µmol h(-1) cm(-2)) by photoholes assisted glucose oxidation opens a new platform in solar-driven PEC biohydrogen generation.


Assuntos
Técnicas Biossensoriais , Cobre/química , Glucose/química , Hidrogênio/química , Titânio/química , Catálise , Eletrodos , Oxirredução , Processos Fotoquímicos
12.
Molecules ; 19(4): 4256-83, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24714190

RESUMO

The lotus plant is recognized as a 'King plant' among all the natural water repellent plants due to its excellent non-wettability. The superhydrophobic surfaces exhibiting the famous 'Lotus Effect', along with extremely high water contact angle (>150°) and low sliding angle (<10°), have been broadly investigated and extensively applied on variety of substrates for potential self-cleaning and anti-corrosive applications. Since 1997, especially after the exploration of the surface micro/nanostructure and chemical composition of the lotus leaves by the two German botanists Barthlott and Neinhuis, many kinds of superhydrophobic surfaces mimicking the lotus leaf-like structure have been widely reported in the literature. This review article briefly describes the different wetting properties of the natural superhydrophobic lotus leaves and also provides a comprehensive state-of-the-art discussion on the extensive research carried out in the field of artificial superhydrophobic surfaces which are developed by mimicking the lotus leaf-like dual scale micro/nanostructure. This review article could be beneficial for both novice researchers in this area as well as the scientists who are currently working on non-wettable, superhydrophobic surfaces.


Assuntos
Materiais Biomiméticos/química , Nanoestruturas/química , Folhas de Planta/química , Politetrafluoretileno/química , Interações Hidrofóbicas e Hidrofílicas , Lotus/anatomia & histologia , Lotus/química , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Folhas de Planta/anatomia & histologia , Propriedades de Superfície , Água/química
13.
Angew Chem Int Ed Engl ; 53(3): 871-4, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24281847

RESUMO

The catalytic, electrocatalytic, or photocatalytic conversion of CO2 into useful chemicals in high yield for industrial applications has so far proven difficult. Herein, we present our work on the electrochemical reduction of CO2 in seawater using a boron-doped diamond (BDD) electrode under ambient conditions to produce formaldehyde. This method overcomes the usual limitation of the low yield of higher-order products, and also reduces the generation of H2 . In comparison with other electrode materials, BDD electrodes have a wide potential window and high electrochemical stability, and, moreover, exhibit very high Faradaic efficiency (74%) for the production of formaldehyde, using either methanol, aqueous NaCl, or seawater as the electrolyte. The high Faradaic efficiency is attributed to the sp(3)-bonded carbon of the BDD. Our results have wide ranging implications for the efficient and cost-effective conversion of CO2.


Assuntos
Dióxido de Carbono/química , Formaldeído/química , Água do Mar/química , Boro/química , Diamante/química , Técnicas Eletroquímicas , Eletrodos , Metanol/química , Oxirredução , Pressão , Teoria Quântica , Temperatura
14.
Sci Rep ; 14(1): 9496, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664484

RESUMO

Disposable bamboo chopsticks (DBCs) are difficult to recycle, which inevitably cause secondary pollution. Based on energy and environmental issues, we propose a facile strategy to fabricate floatable photocatalyst (fPC) coated onto DBCs, which can be flexibly used in water purification. The photocatalyst of titania and titanium carbide on bamboo (TiO2/TiC@b) was successfully constructed from TiC-Ti powders and DBCs using a coating technique followed heat treatment in carbon powder, and the fPC exhibited excellent photocatalytic activity under visible light irradation. The analysis results indicate that rutile TiO2 forms on TiC during heat treatment, achieving a low-density material with an average value of approximately 0.5233 g/cm3. The coatings of TiO2/TiC on the bamboo are firm and uniform, with a particle size of about 20-50 nm. XPS results show that a large amount of oxygen vacancies is generated, due to the reaction atmosphere of more carbon and less oxygen, further favoring to narrowing the band gap of TiO2. Furthermore, TiO2 formed on residual TiC would induce the formation of a heterojunction, which effectively inhibits the photogenerated electron-hole recombination via the charge transfer effect. Notably, the degradation of dye Rhodamine B (Rh.B) is 62.4% within 3 h, while a previous adsorption of 36.0% for 1 h. The excellent photocatalytic performance of TiO2/TiC@b can be attributed to the enhanced reaction at the water/air interface due to the reduced light loss in water, improved visible-light response, increased accessible area and charge transfer effect. Our findings show that the proposed strategy achieves a simple, low-cost, and mass-producible method to fabricate fPC onto the used DBCs, which is expected to applied in multiple fields, especially in waste recycling and water treatment.

15.
Nanoscale ; 16(20): 10071, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38742389

RESUMO

Correction for 'α-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting' by Hyungkyu Han et al., Nanoscale, 2017, 9, 134-142, https://doi.org/10.1039/C6NR06908H.

16.
Nanomaterials (Basel) ; 13(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36678091

RESUMO

Semiconductor-based photocatalyst materials played an important role in the degradation of organic compounds in recent years. Photocatalysis is a simple, cost-effective, and environmentally friendly process for degrading organic compounds. In this work, vanadium pentoxide (V2O5) and V2O5/RGO (reduced graphene oxide) composite were synthesized by a hydrothermal method. The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Raman spectroscopy, and UV-Vis spectroscopic analysis, etc. Raman analysis shows the occurrence of RGO characteristic peaks in the composite and different vibrational modes of V2O5. The band gap of flake-shaped V2O5 is reduced and its light absorption capacity is enhanced by making its composite with RGO. The photocatalytic degradation of methylene blue (MB) was studied using both V2O5 and V2O5/RGO composite photocatalyst materials. The V2O5/RGO composite exhibits a superior photocatalytic performance to V2O5. Both catalyst and light play an important role in the degradation process.

17.
Sci Total Environ ; 902: 166018, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543324

RESUMO

Recently, the conversion of carbon dioxide (CO2) into a useful resource and its byproducts by electrocatalytic reduction has been studied. It is well known that CO2 can be selectively reduced by gold, lead, etc. supported on conductive carbon. However, the high pH in the vicinity of the electrode raises concerns about the catalyst and catalyst support degradation. Therefore, we considered that using chemically stable TiO2 (titanium dioxide) powder as an alternative to carbon. Surface treatment using in-liquid plasma was used to improve the electrochemical properties of TiO2. TiO2 maintained its particle shape and crystalline structure after in-liquid plasma treatment. Electrochemical properties were evaluated and the disappearance of Ti4+ and Ti3+ redox peaks derived from TiO2 and a decrease in hydrogen overvoltage were observed. The hydrogen overvoltage relationship suggested that tungsten coating or doping on a portion of the reduced TiO2 surface. Electrocatalytic CO2 reduction using the silver nanoparticle-supported in-liquid plasma treated TiO2 showed increased hydrogen production. In electrocatalytic CO2 reduction, the ratio of hydrogen to carbon monoxide gas is important. Therefore, in-liquid plasma treated TiO2 is useful for the electrocatalytic CO2 reduction application.

18.
J Colloid Interface Sci ; 642: 829-836, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36870903

RESUMO

Advanced oxidation technologies (AOTs) proved to be effective in the degradation of hazardous organic impurities like acids, dyes, antibiotics etc. in the last few decades. AOTs are mainly based on the generation of reactive chemical species (RCS) such as hydroxyl, superoxide radicals etc., which plays an important role in the degradation of organiccompounds. In this work, plasma supported AOT i.e. Fenton reactions have been applied for the degradation of ibuprofen. As compared to traditional AOTs plasma assisted AOT is technologically superior due to its capability to produce RCS at a controlled rate without using chemical agents. This process work at normal room temperature and pressure. Herein, we optimized better operating conditions to generate good plasma discharge and hydroxyl radicals based on critical parameters, including frequency, pulse width and different gases like O2, Ar etc. Also, the one-pot carbonization method is used for the synthesis of Fe-based ordered mesoporous carbon (OMC) as a heterogeneous catalyst for the Fenton reactions. Using plasma-supported Fenton reactions, 88.3 % degradation efficiency is achieved using Fe-OMC catalyst for the ibuprofen degradation. Also, the mineralization of the ibuprofen is studied using total organic carbon (TOC) analysis.

19.
J Colloid Interface Sci ; 645: 219-226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37149996

RESUMO

On the basis of the inherent property limitations of commercial P25-TiO2, many surface interface modification methods have attracted substantial attention for further improving the photocatalytic properties. However, current strategies for designing and modifying efficient photocatalysts (which exhibit complicated manufacturing processes and harsh conditions) are not efficient for production that is low cost, is nontoxic, and exhibits good stability; and therefore restrict practical applications. Herein, a facile and reliable method is reported for in situ amine-containing silane coupling agent functionalization of commercial P25-TiO2 by covalent surface modification for constructing a highly efficient photocatalyst. As a consequence, a high efficiency of H2 evolution was achieved for TiO2-SDA with 0.95 mmol h-1 g-1 (AQE ∼45.6 % at 365 nm) under solar light irradiation without a co-catalyst. The amination modification broadens the light absorption range of the photocatalyst, inhibits the binding of photogenerated carriers, and improves the photocatalytic efficiency; which was verified by photochemical properties and DFT theoretical calculations. This covalent modification method ensures the stability of the photocatalytic reaction. This work provides an approach for molecularly modified photocatalysts to improve photocatalytic performance by covalently modifying small molecules containing amine groups on the photocatalyst surface.

20.
Heliyon ; 9(10): e20259, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37822607

RESUMO

Here, we propose a two-step pervaporation system with a high-silica CHA (chabazite) membrane, which has sufficient resistance to water and acid, to demonstrate the extraction and condensation of the formic acid formed by electroreduction of CO2. The kinetic diameters of water and formic acid are similar and smaller than the pore size of CHA, while the hydrated electrolyte ions (e.g., K+ and Cl-) are larger than the pore size of CHA. Consequently, the electrolyte ions are separated from the mixture of water and formic acid in the first desalination process, and then water molecules are easily removed from the mixture in the second dehydration process. From 300 ml of an approximately 3 wt% formic acid aqueous solution containing 0.5 M KCl, 10 ml of 18.2 wt% formic acid was obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA