Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cancer ; 21(1): 35, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120522

RESUMO

BACKGROUND: Chronic lymphocytic leukemia (CLL) is the most frequent, and still incurable, form of leukemia in the Western World. It is widely accepted that cancer results from an evolutionary process shaped by the acquisition of driver mutations which confer selective growth advantage to cells that harbor them. Clear examples are missense mutations in classic RAS genes (KRAS, HRAS and NRAS) that underlie the development of approximately 13% of human cancers. Although autonomous B cell antigen receptor (BCR) signaling is involved and mutations in many tumor suppressor genes and oncogenes have been identified, an oncogenic driver gene has not still been identified for CLL. METHODS: Conditional knock-in mice were generated to overexpress wild type RRAS2 and prove its driver role. RT-qPCR analysis of a human CLL sample cohort was carried out to measure RRAS2 transcriptional expression. Sanger DNA sequencing was used to identify a SNP in the 3'UTR region of RRAS2 in human CLL samples. RNAseq of murine CLL was carried out to identify activated pathways, molecular mechanisms and to pinpoint somatic mutations accompanying RRAS2 overexpression. Flow cytometry was used for phenotypic characterization and shRNA techniques to knockdown RRAS2 expression in human CLL. RESULTS: RRAS2 mRNA is found overexpressed in its wild type form in 82% of the human CLL samples analyzed (n = 178, mean and median = 5-fold) as well as in the explored metadata. A single nucleotide polymorphism (rs8570) in the 3'UTR of the RRAS2 mRNA has been identified in CLL patients, linking higher expression of RRAS2 with more aggressive disease. Deliberate overexpression of wild type RRAS2 in mice, but not an oncogenic Q72L mutation in the coding sequence, provokes the development of CLL. Overexpression of wild type RRAS2 in mice is accompanied by a strong convergent selection of somatic mutations in genes that have been identified in human CLL. R-RAS2 protein is physically bound to the BCR and mediates BCR signals in CLL. CONCLUSIONS: The results indicate that overexpression of wild type RRAS2 is behind the development of CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Proteínas Monoméricas de Ligação ao GTP , Animais , Genes ras , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas de Membrana/genética , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Receptores de Antígenos de Linfócitos B , Transdução de Sinais
2.
Commun Biol ; 6(1): 437, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081131

RESUMO

Successful vaccines rely on activating a functional humoral immune response through the generation of class-switched high affinity immunoglobulins (Igs). The germinal center (GC) reaction is crucial for this process, in which B cells are selected in their search for antigen and T cell help. A major hurdle to understand the mechanisms of B cell:T cell cooperation has been the lack of an antigen-specific in vitro GC system. Here we report the generation of antigen-specific, high-affinity, class-switched Igs in simple 2-cell type cultures of naive B and T cells. B cell antigen uptake by phagocytosis is key to generate these Igs. We have used the method to interrogate if T cells confer directional help to cognate B cells that present antigen and to bystander B cells. We find that bystander B cells do not generate class-switched antibodies due to a defective formation of T-B conjugates and an early conversion into memory B cells.


Assuntos
Linfócitos B , Centro Germinativo , Antígenos/metabolismo , Imunidade Humoral , Recreação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA