Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642684

RESUMO

Due to the absence of effective vaccine and treatment, African swine fever virus (ASFV) control is entirely dependent on accurate and early diagnosis, along with culling of infected pigs. The B646L/p72 is the major capsid protein of ASFV and is an important target for developing a diagnostic assays and vaccines. Herein, we generated a monoclonal antibody (mAb) (designated as 2F11) against the trimeric p72 protein, and a blocking ELISA (bELISA) was established for the detection of both genotype I and II ASFV antibodies. To evaluate the performance of the diagnostic test, a total of 506 porcine serum samples were tested. The average value of percent of inhibition (PI) of 133 negative pig serum was 8.4 % with standard deviation (SD) 6.5 %. Accordingly, the cut-off value of the newly established method was set at 28 % (mean + 3SD). Similarly, a receiver operating characteristic (ROC) was applied to determine the cut off value and the p72-bELISA exhibited a sensitivity of 100 % and a specificity of 99.33 % when the detection threshold was set at 28 %. The bELISA was also able to specifically recognize anti-ASFV sera without cross-reacting with other positive serums for other major swine pathogens. Moreover, by designing a series of overlapped p72 truncated proteins, the linear B cell epitope recognized by 2F11 mAb was defined to be 283NSHNIQ288. Amino acid sequence comparison revealed that the amino acid sequence 283NSHNIQ288 is highly conserved between different ASFV isolates. Our findings indicate that the newly established mAb based blocking ELISA may have a great potential in improving the detection of ASFV antibodies and provides solid foundation for further studies.


Assuntos
Vírus da Febre Suína Africana , Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B , Animais , Vírus da Febre Suína Africana/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Suínos , Epitopos de Linfócito B/imunologia , Proteínas do Capsídeo/imunologia , Febre Suína Africana/imunologia , Febre Suína Africana/diagnóstico , Febre Suína Africana/virologia , Sequência de Aminoácidos , Mapeamento de Epitopos
2.
Virus Res ; 346: 199412, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838820

RESUMO

African swine fever virus (ASFV) is a large double-stranded DNA virus with a complex structural architecture and encodes more than 150 proteins, where many are with unknown functions. E184L has been reported as one of the immunogenic ASFV proteins that may contribute to ASFV pathogenesis and immune evasion. However, the antigenic epitopes of E184L are not yet characterized. In this study, recombinant E184L protein was expressed in prokaryotic expression system and four monoclonal antibodies (mAbs), designated as 1A10, 2D2, 3H6, and 4C10 were generated. All four mAbs reacted specifically with ASFV infected cells. To identify the epitopes of the mAbs, a series of overlapped peptides of E184L were designed and expressed as maltose binding fusion proteins. Accordingly, the expressed fusion proteins were probed with each E184L mAb separately by using Western blot. Following a fine mapping, the minimal linear epitope recognized by mAb 1A10 was identified as 119IQRQGFL125, and mAbs 2D2, 3H6, and 4C10 recognized a region located between 153DPTEFF158. Alignment of amino acids of E184L revealed that the two linear epitopes are highly conserved among different ASFV isolates. Furthermore, the potential application of the two epitopes in ASFV diagnosis was assessed through epitope-based ELISA using 24 ASFV positive and 18 negative pig serum and the method were able to distinguish positive and negative samples, indicating the two epitopes are dominant antigenic sites. To our knowledge, this is the first study to characterize the B cell epitopes of the antigenic E184L protein of ASFV, offering valuable tools for future research, as well as laying a foundation for serological diagnosis and epitope-based marker vaccine development.


Assuntos
Vírus da Febre Suína Africana , Anticorpos Monoclonais , Anticorpos Antivirais , Mapeamento de Epitopos , Epitopos de Linfócito B , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Anticorpos Monoclonais/imunologia , Epitopos de Linfócito B/imunologia , Animais , Anticorpos Antivirais/imunologia , Suínos , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Camundongos , Proteínas Virais/imunologia , Proteínas Virais/genética , Proteínas Virais/química , Antígenos Virais/imunologia , Antígenos Virais/genética , Antígenos Virais/química , Camundongos Endogâmicos BALB C
3.
Viruses ; 14(8)2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-36016353

RESUMO

African swine fever (ASF) is a highly contagious hemorrhagic disease of pigs, posing a significant threat to the world pig industry. Several researchers are investigating the possibilities for developing a safe and efficient vaccine against ASF. In this regard, significant progress has been made and some gene-deleted ASFVs are reported as potential live attenuated vaccines. A seven-gene-deleted live attenuated vaccine candidate HLJ/18-7GD (among which CD2v is included) has been developed in our laboratory and reported to be safe and protective, and it is expected to be commercialized in the near future. There is an urgent need for developing a diagnostic method that can clearly discriminate between wild-type-ASFV-infected and vaccinated animals (DIVA). In the present study, a dual indirect ELISA based on p54 and CD2v proteins was successfully established to specifically distinguish serum antibodies from pigs infected with wild-type ASFV or possessing vaccine immunization. To evaluate the performance of the assay, a total of 433 serum samples from four groups of pigs experimentally infected with the wild-type HLJ/18 ASFV, immunized with the HLJ/18-7GD vaccine candidate, infected with the new lower virulent variant, and specific-pathogen-free pigs were used. Our results showed that the positive rate of immunized serum was 96.54% (p54) and 2.83% (CD2v), and the positive rate of the infection by wild-type virus was 100% (p54) and 97.8% (CD2v). Similarly, the positive rate to infection by the new low-virulent ASFV variant in China was 100% (p54) and 0% (CD2v), indicating the technique was also able to distinguish antibodies from wild-type and the new low-virulent ASFV variant in China. Moreover, no cross-reaction was observed in immune sera from other swine pathogens, such as CSFV, PEDV, PRRSV, HP-PRRSV, PCV2, and PrV. Overall, the developed dual indirect ELISA exhibited high diagnostic sensitivity, specificity, and repeatability and will provide a new approach to differentiate serum antibodies between wild virulent and CD2v-unexpressed ASFV infection, which will play a great role in serological diagnosis and epidemiological monitoring of ASF in the future.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Febre Suína Africana/diagnóstico , Febre Suína Africana/prevenção & controle , Animais , Ensaio de Imunoadsorção Enzimática , Suínos , Vacinas Atenuadas , Proteínas Virais/metabolismo
4.
Pathogens ; 10(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562314

RESUMO

African swine fever (ASF) is a highly lethal hemorrhagic viral disease of domestic pigs caused by African swine fever virus (ASFV). Although a good advance has been made to understand the virus, a safe and effective vaccine against ASFV is still lacking and its eradication solely depends on its early and accurate diagnosis. Thus, improving the available diagnostic assays and adding some validated techniques are useful for a range of serological investigations. The aim of this study was to produce and characterize p54 monoclonal antibodies with an ultimate goal of developing a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for ASFV antibody detection. Five monoclonal antibodies against p54 protein expressed in Escherichia coli was generated and their characterizations were investigated. Furthermore, a competitive enzyme-linked immunosorbent assay (cELISA) based on a monoclonal antibody designated as 2A7 was developed. To evaluate the performance of the assay, a total of 365 pig serum samples (178 negative and 187 positive samples) were tested and a receiver-operating characteristic (ROC) analysis was applied to determine the cut-off value. Based on the ROC analysis, the area under the curve (AUC) was 0.982 (95% confidence interval: 96.9% to 99.4%), besides a sensitivity of 92.5% and a specificity of 98.9% was achieved when the percent inhibition of 20% was selected as a threshold. Moreover, the result showed an excellent agreement when compared to other commercially available blocking ELISA (kappa value = 0.912) and showed no reaction to other swine pathogens. Overall, the newly developed cELISA method offers a promising approach for a rapid and convenient ASFV serodiagnosis, which could be used as alternative to other serological assays for screening possible ASFV infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA