RESUMO
BACKGROUND: This research focused on the effect of organic production systems on initial quality and postharvest performance of lamb's lettuce leaves stored in air or under modified atmosphere at refrigerated temperature. Different strategies of organic soil fertility management were compared under the same environmental conditions: (i) a simplified organic production system based on organic commercial fertilizers to recover crop uptake (SB); (ii) an organic production system based on organic matter amendment mainly supplied by animal manure (AM); and (iii) an organic production system based on organic matter amendment supplied by green waste compost (AC). Fully developed lamb's lettuce leaves were harvested and then packed into perforated bags (control in AIR) or in modified atmosphere packaging (MAP) and stored at 4 °C. RESULTS: At harvest, the yield of lamb's lettuce in the AM and AC systems was higher than that in SB. Phenol and dehydroascorbic acid accumulation was observed in the system with the lowest initial supply of organic amendment (SB). Regarding the effect of packaging, AIR conditions maintained the initial quality attributes for a longer period than MAP, which developed off-odours above the threshold of acceptability at 11 days, irrespective of the production system used. CONCLUSION: In general, the initial differences among the production systems were minimal during the postharvest storage. As for the tested packaging systems, AIR successfully maintained the initial quality attributes for a longer period than the MAP. © 2018 Society of Chemical Industry.
Assuntos
Embalagem de Alimentos/métodos , Lactuca/química , Agricultura Orgânica/métodos , Fertilizantes/análise , Embalagem de Alimentos/economia , Embalagem de Alimentos/instrumentação , Armazenamento de Alimentos , Lactuca/crescimento & desenvolvimento , Esterco/análise , Agricultura Orgânica/economia , Agricultura Orgânica/instrumentação , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimentoRESUMO
The use of pesticides in agriculture has grown dramatically over the last decades. Environmental exposure of humans to agrochemicals is common and results in both acute and chronic health effects. In this study, direct immersion-solid phase microextraction (SPME) was coupled with electron capture detection for trace determination of 19 chlorinated pesticides in tomato samples, using a 100 pm polydimethylsiloxane fiber. The experimental parameters extraction time, extraction temperature, stirring, and salting out were evaluated and optimized. The LODs ranged from 0.5 to 8 microg/kg, and the LOQs from 5 to 30 microg/kg. A linear response was confirmed by correlation coefficients ranging from 0.97 to 0.9985. The developed method was tested by analyzing real samples purchased within the network of Italian distribution. The samples were found to be free from detectable residues of the studied pesticides. SPME has been shown to be a fast extraction technique that has several advantages such as solvent-free extraction, simplicity, and compatibility with the chromatographic analytical system.
Assuntos
Cloro/análise , Cromatografia Gasosa/métodos , Resíduos de Praguicidas/análise , Praguicidas/análise , Solanum lycopersicum/química , Microextração em Fase Sólida/métodos , Calibragem , Dimetilpolisiloxanos/química , Elétrons , Praguicidas/química , Reprodutibilidade dos Testes , Solventes/química , Temperatura , Fatores de Tempo , Água/químicaRESUMO
The formation of organohalogen compounds in waters treated by chlorination has drawn increasing scientific attention due to the potentially hazardous health effects of this class of substances. Today, chlorination is the most widely used technology for civil water disinfection. In this study, headspace-solid phase microextraction coupled with GC-electron capture detector was used to determine organohalogen compounds in drinking water sampled from aqueducts and artesian wells in Italy. Experimental parameters, such as sample volume, stirring, salting out, extraction temperature, and extraction time, were evaluated and optimized. The LODs ranged from 1 to 10 ng/L and LOQs from 5 to 50 ng/L. A linear response was confirmed by correlation coefficients ranging from 0.9443 to 0.9999. Quantifiable organohalogen residues were found in 11 water samples, with concentration up to 11.3 +/- 0.5 microg/L for the sum of all trihalomethanes and 0.66 +/- 0.03 microg/L for the sum of trichloroethylene and tetrachloroethylene. These concentrations are lower than the current regulatory limits in Italy.
Assuntos
Água Potável/análise , Hidrocarbonetos Halogenados/análise , Poluentes Químicos da Água/análise , Calibragem , Cromatografia Gasosa/métodos , Eletroquímica , Água Subterrânea/análise , Indicadores e Reagentes , Itália , Limite de Detecção , Reprodutibilidade dos Testes , Microextração em Fase Sólida/métodos , Temperatura , Trialometanos/análise , Poços de ÁguaRESUMO
Mycorrhizal symbiosis represents a valuable tool for increasing plant nutrient uptake, affecting system biodiversity, ecosystem services and productivity. Introduction of agroecological service crops (ASCs) in cropping systems may determine changes in weed community, that can affect the development of the mycorrhizal mycelial network in the rhizosphere, favoring or depressing the cash crop mycorrhization. Two no-till Mediterranean organic horticultural systems were considered: one located in central Italy, where organic melon was transplanted on four winter-cereals mulches (rye, spelt, barley, wheat), one located in southern Italy (Sicily), where barley (as catch crop) was intercropped in an organic young orange orchard, with the no tilled, unweeded systems taken as controls. Weed "Supporting Arbuscular Mycorrhiza" (SAM) trait, weed density and biodiversity indexes, mycorrhization of coexistent plants in the field, the external mycelial network on roots were analyzed by scanning electron microscopy, crop P uptake, yield and quality were evaluated. We verified that cereals, used as green mulches or intercropped, may drive the weed selection in favor of the SAM species, and promote the mycelial network, thus significantly increasing the mycorrhization, the P uptake, the yield and quality traits of the cash crop. This is a relevant economic factor when introducing sustainable cropping practices and assessing the overall functionality of the agroecosystem.
RESUMO
This paper explores the effect of agroecological service crops (ASCs), i.e., crops included in the crop rotation for their ecosystem services, terminated with an in-line tillage roller crimper (ILRC) on weed community composition and their functional traits in comparison to a tilled control without ASC. A two-year study was performed in a long-term experiment with vegetables under organic management. Four different cereal crops were introduced as ASCs. Weed abundance and richness and the functional traits were assessed at three different stages, i.e., before and after ASC termination and before harvest of the following crop, melon. All the ASCs showed strong weed suppression, with few differences between the cereals tested. Weed communities with ASCs had later flowering onset and wider flowering span compared to the control, which positively affects weed dispersal and attraction of beneficial insects. However, weed communities with ASCs had higher values for traits related to competition (specific leaf area, seed weight and more perennials). A trade-off between weed suppression and selection of more competitive weed communities by the introduction of ASCs managed with the ILRC should be evaluated in the long-run. The use of the ILRC alternating with other soil management practices seems the more effective strategy to benefit from the minimal soil tillage while avoiding the selection of disservice-related traits in the weed community.
RESUMO
The mycorrhizal fungi are symbiotic organisms able to provide many benefits to crop production by supplying a set of ecosystem functions. A recent ecological approach based on the ability of the fungi community to influence plant-plant interactions by extraradical mycelium development may be applied to diversified, herbaceous agroecosystems. Our hypothesis is that the introduction of a winter cereal cover crop (CC) as arbuscular mycorrhizal fungi (AMF)-host plant in an organic rotation can boosts the AMF colonization of the other plants, influencing crop-weed interference. In a 4-years organic rotation, the effect of two winter cereal CC, rye and spelt, on weed density and AMF colonization was evaluated. The AMF extraradical mycelium on CC and weeds roots was observed by scanning electron microscopy analysis. By joining data of plant density and mycorrhization, we built the mycorrhizal colonization intensity of the Agroecosystem indicator (MA%). Both the CC were colonized by soil AMF, being the mycorrhizal colonization intensity (M%) affected by environmental conditions. Under CC, the weed density was reduced, due to the increase of the reciprocal competition in favor of CC, which benefited from mycorrhizal colonization and promoted the development of AMF extraradical mycelium. Even though non-host plants, some weed species showed an increased mycorrhizal colonization in presence of CC respect to the control. Under intense rainfall, the MA% was less sensitive to the CC introduction. On the opposite, under highly competitive conditions, both the CC boosted significantly the mycorrhization of coexistent plants in the agroecosystem. The proposed indicator measured the agroecological service provided by the considered CCs in promoting or inhibiting the overall AMF colonization of the studied agroecosystems, as affected by weed selection and growth: It informs about agroecosystem resilience and may be profitably applied to indicate the extent of the linkage of specific crop traits to agroecosystem services, contributing to further develop the functional biodiversity theory.