Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Divers ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37919619

RESUMO

Efflux pumps have been reported as one of the significant mechanisms by which bacteria evade the effects of multiple antibiotics. The tripartite efflux pump MexAB-OprM in Pseudomonas aeruginosa is one of the most significant multidrug efflux systems due to its broad resistance to antibiotics such as chloramphenicol, fluoroquinolones, lipophilic ß-lactam antibiotics, nalidixic acid, novobiocin, rifampicin, and tetracycline. A promising strategy to overcome this resistance mechanism is to combine antibiotics with efflux pump inhibitors (EPIs), which can increase their intracellular concentration to enhance their biological activities. Based on 143 EPIs with chemically diverse skeletons, the 3D pharmacophore and 2D-QSAR modelings were developed and used for the virtual screening on 9.2 million compounds including ZINC15, DrugBank, and Traditional Chinese Medicine databases to identify new EPIs. The molecular docking was also performed to evaluate the binding affinity of potential EPIs to the distal-binding pocket of MexB and resulted in 611 potential EPIs. The structure-activity relationship analyses suggested that nitrogen heterocyclic compounds, piperazine and pyridine scaffolds, and amide derivatives are the most favorable chemically features for MexAB inhibitory activities. The results from molecular dynamics analysis in 100 ns indicated that ZINC009296881 and ZINC009200074 were the most potential MexB inhibitors with strong binding affinity to the distal pocket and MM/GBSA ∆Gbind values of - 38.97 and - 30.19 kcal mol-1, respectively. The predicted pharmacokinetic properties and toxicity of these compounds indicated their potential oral drugs. Multistep virtual screening of EPIs for MexAB-OprM, efflux pump multidrug resistant of P. aeruginosa.

2.
Mol Divers ; 27(5): 2315-2330, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36319930

RESUMO

IL(interleukin)-6 is a multifunctional cytokine crucial for immunological, hematopoiesis, inflammation, and bone metabolism. Strikingly, IL-6 has been shown to significantly contribute to the initiation of cytokine storm-an acute systemic inflammatory syndrome in Covid-19 patients. Recent study has showed that blocking the IL-6 signaling pathway with an anti-IL-6 receptor monoclonal antibody (mAb) can reduce the severity of COVID-19 symptoms and enhance patient survival. However, the mAb has several drawbacks, such as high cost, potential immunogenicity, and invasive administration due to the large-molecule protein product. Instead, these issues could be mitigated using small molecule IL-6 inhibitors, but none are currently available. This study aimed to discover IL-6 inhibitors based on the PPI with a novel camelid Fab fragment, namely 68F2, in a crystal protein complex structure (PDB ID: 4ZS7). The pharmacophore models and molecular docking were used to screen compounds from DrugBank databases. The oral bioavailability of the top 24 ligands from the screening was predicted by the SwissAMDE tool. Subsequently, the selected molecules from docking and MD simulation illustrated a promising binding affinity in the formation of stable complexes at the active binding pocket of IL-6. Binding energies using the MM-PBSA technique were applied to the top 4 hit compounds. The result indicated that DB08402 and DB12903 could form strong interactions and build stable protein-ligand complexes with IL-6. These potential compounds may serve as a basis for further developing small molecule IL-6 inhibitors in the future.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Interleucina-6 , Ligantes
3.
Mol Divers ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369956

RESUMO

Diabetes mellitus is one of the top ten causes of death worldwide, accounting for 6.7 million deaths in 2021, and is one of the most rapidly growing global health emergencies of this century. Although several classes of therapeutic drugs have been invented and applied in clinical practice, diabetes continues to pose a serious and growing threat to public health and places a tremendous burden on those affected and their families. The strategy of reducing carbohydrate digestibility by inhibiting the activities of α-glucosidase and α-amylase is regarded as a promising preventative treatment for type 2 diabetes. In this study, we investigated the dual inhibitory effect against two polysaccharide hydrolytic enzymes of flavonoid derivatives from an in-house chemical database. By combining molecular docking and structure-activity relationship analysis, twelve compounds with docking energies less than or equal to - 8.0 kcal mol-1 and containing required structural features for dual inhibition of the two enzymes were identified and subjected to chemical synthesis and in vitro evaluation. The obtained results showed that five compounds exhibited dual inhibitory effects on the target enzymes with better IC50 values than the approved positive control acarbose. Molecular dynamics simulations were performed to elucidate the binding of these flavonoids to the enzymes. The predicted pharmacokinetic and toxicological properties suggest that these compounds are viable for further development as type 2 diabetes drugs.

4.
Mol Divers ; 26(5): 2659-2678, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35031934

RESUMO

The interleukin-1 receptor like ST2 has emerged as a potential drug discovery target since it was identified as the receptor of the novel cytokine IL-33, which is involved in many inflammatory and autoimmune diseases. For the treatment of such IL-33-related disorders, efforts have been made to discover molecules that can inhibit the protein-protein interactions (PPIs) between IL-33 and ST2, but to date no drug has been approved. Although several anti-ST2 antibodies have entered clinical trials, the exploration of small molecular inhibitors is highly sought-after because of its advantages in terms of oral bioavailability and manufacturing cost. The aim of this study was to discover ST2 receptor inhibitors based on its PPIs with IL-33 in crystal structure (PDB ID: 4KC3) using virtual screening tools with pharmacophore modeling and molecular docking. From an enormous chemical space ZINC, a potential series of compounds has been discovered with stronger binding affinities than the control compound from a previous study. Among them, four compounds strongly interacted with the key residues of the receptor and had a binding free energy < - 20 kcal/mol. By intensive calculations using data from molecular dynamics simulations, ZINC59514725 was identified as the most potential candidate for ST2 receptor inhibitor in this study.


Assuntos
Interleucina-33 , Simulação de Dinâmica Molecular , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores de Interleucina-1 , Zinco
5.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232872

RESUMO

The World Health Organization declared monkeypox a global public health emergency on 23 July 2022. This disease was caused by the monkeypox virus (MPXV), which was first identified in 1958 in Denmark. The MPXV is a member of the Poxviridae family, the Chordopoxvirinae subfamily, and the genus Orthopoxvirus, which share high similarities with the vaccinia virus (the virus used to produce the smallpox vaccine). For the initial stage of infection, the MPXV needs to attach to the human cell surface glycosaminoglycan (GAG) adhesion molecules using its E8 protein. However, up until now, neither a structure for the MPXV E8 protein nor a specific cure for the MPXV exists. This study aimed to search for small molecules that inhibit the MPXV E8 protein, using computational approaches. In this study, a high-quality three-dimensional structure of the MPXV E8 protein was retrieved by homology modeling using the AlphaFold deep learning server. Subsequent molecular docking and molecular dynamics simulations (MDs) for a cumulative duration of 2.1 microseconds revealed that ZINC003977803 (Diosmin) and ZINC008215434 (Flavin adenine dinucleotide-FAD) could be potential inhibitors against the E8 protein with the MM/GBSA binding free energies of -38.19 ± 9.69 and -35.59 ± 7.65 kcal·mol-1, respectively.


Assuntos
Diosmina , Mpox , Vacina Antivariólica , Flavina-Adenina Dinucleotídeo , Glicosaminoglicanos , Humanos , Simulação de Acoplamento Molecular , Mpox/prevenção & controle , Monkeypox virus , Proteínas Virais
6.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555726

RESUMO

Antibiotic resistance has been becoming more and more critical due to bacteria's evolving hydrolysis enzymes. The NDM-1 enzyme could hydrolyze not only carbapenems but also most of ß-lactam's antibiotics and inhibitors. In fact, variant strains could impose a high impact on the resistance of bacteria producing NDM-1. Although previous studies showed the effect of some variants toward antibiotics and inhibitors binding, there has been no research systematically evaluating the effects of alternative one-point mutations on the hydrolysis capacity of NDM-1. This study aims to identify which mutants could increase or decrease the effectiveness of antibiotics and ß-lactamase inhibitors toward bacteria. Firstly, 35 different variants with a high probability of emergence based on the PAM-1 matrix were constructed and then docked with 5 ligands, namely d-captopril, l-captopril, thiorphan, imipenem, and meropenem. The selected complexes underwent molecular dynamics simulation and free energy binding estimation, with the results showing that the substitutions at residues 122 and 124 most influenced the binding ability of NDM-1 toward inhibitors and antibiotics. The H122R mutant decreases the binding ability between d-captopril and NDM-1 and diminishes the effectiveness of this antibiotic toward Enterobacteriaceae. However, the H122R mutant has a contrary impact on thiorphan, which should be tested in vitro and in vivo in further experiments.


Assuntos
Carbapenêmicos , Inibidores de beta-Lactamases , Carbapenêmicos/farmacologia , Carbapenêmicos/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Mutação Puntual , Captopril , Tiorfano , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamases/metabolismo , Bactérias/metabolismo , Testes de Sensibilidade Microbiana
7.
Mol Divers ; 25(2): 741-751, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32048150

RESUMO

The overexpression of ABCC2/MRP2, an ATP-binding cassette transporter, contributes to multidrug resistance in cancer cells. In this study, a quantitative structure-activity relationship (QSAR) analysis on ABCC2 inhibitors has been carried out, aiming to establish a computational prediction model for ABCC2 modulators. Seven classification models and two regression models were built by SONNIA 4.2, and two other regression models were built by MOE 2008.10 based on a data set comprising 372 compounds collected from 16 relevant publications. The CPG-C iABCC2 model for classifying ABCC2 inhibitors has total accuracy of 0.88 and Matthews correlation coefficient MCC = 0.75. The CPG-C iEG model for classifying ABCC2 inhibitors (substrate EG: ß-estradiol 17-ß-D-glucuronide) has total accuracy of 0.91 and MCC = 0.82. The regression model PLS EG-IC50 for predicting ABCC2 inhibitors (substrate EG) gave root-mean-square error RMSE = 0.26, Q2 = 0.73 and [Formula: see text]. The regression model PLS CDCF-IC50 for predicting ABCC2 inhibitors [substrate CDCF: 5(6)-carboxy-2',7'-dichlorofluorescein] gave RMSE = 0.31, Q2 = 0.74 and [Formula: see text]. Four 2D-QSAR models were applied to 1661 compounds, with results indicating 369 compounds having the ability to reverse the efflux of both EG and CDCF by ABCC2, 152 among them having IC50 < 100 µM.


Assuntos
Modelos Químicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Relação Quantitativa Estrutura-Atividade , Proteína 2 Associada à Farmacorresistência Múltipla , Análise de Regressão
8.
Molecules ; 26(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071039

RESUMO

ABCG2 is an ABC membrane protein reverse transport pump, which removes toxic substances such as medicines out of cells. As a result, drug bioavailability is an unexpected change and negatively influences the ADMET (absorption, distribution, metabolism, excretion, and toxicity), leading to multi-drug resistance (MDR). Currently, in spite of promising studies, screening for ABCG2 inhibitors showed modest results. The aim of this study was to search for small molecules that could inhibit the ABCG2 pump. We first used the WISS MODEL automatic server to build up ABCG2 homology protein from 655 amino acids. Pharmacophore models, which were con-structed based on strong ABCG2 inhibitors (IC50 < 1 µM), consist of two hydrophobic (Hyd) groups, two hydrogen bonding acceptors (Acc2), and an aromatic or conjugated ring (Aro|PiR). Using molecular docking method, 714 substances from the DrugBank and 837 substances from the TCM with potential to inhibit the ABCG2 were obtained. These chemicals maybe favor synthesized or extracted and bioactivity testing.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
9.
Molecules ; 25(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785161

RESUMO

Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are the two crucial enzymes involved in the pathology of Alzheimer's disease. The former is responsible for many defects in cholinergic signaling pathway and the latter is the primary enzyme in the biosynthesis of beta-amyloid as the main component of the amyloid plaques. These both abnormalities are found in the brains of Alzheimer's patients. In this study, in silico models were developed, including 3D-pharmacophore, 2D-QSAR (two-dimensional quantitative structure-activity relationship), and molecular docking, to screen virtually a database of compounds for AChE and BACE-1 inhibitory activities. A combinatorial library containing more than 3 million structures of curcumin and flavonoid derivatives was generated and screened for drug-likeness and enzymatic inhibitory bioactivities against AChE and BACE-1 through the validated in silico models. A total of 47 substances (two curcumins and 45 flavonoids), with remarkable predicted pIC50 values against AChE and BACE-1 ranging from 4.24-5.11 (AChE) and 4.52-10.27 (BACE-1), were designed. The in vitro assays on AChE and BACE-1 were performed and confirmed the in silico results. The study indicated that, by using in silico methods, a series of curcumin and flavonoid structures were generated with promising predicted bioactivities. This would be a helpful foundation for the experimental investigations in the future. Designed compounds which were the most feasible for chemical synthesis could be potential candidates for further research and lead optimization.


Assuntos
Acetilcolinesterase/química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Curcumina/química , Flavonoides/química , Acetilcolinesterase/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Sítios de Ligação , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Curcumina/metabolismo , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Flavonoides/metabolismo , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Relação Quantitativa Estrutura-Atividade
10.
Molecules ; 25(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899576

RESUMO

Acetylcholinesterase (AChE) and ß-secretase (BACE-1) have become attractive therapeutic targets for Alzheimer's disease (AD). Flavones are flavonoid derivatives with various bioactive effects, including AChE and BACE-1 inhibition. In the present work, a series of 14 flavone derivatives was synthesized in relatively high yields (35-85%). Six of the synthetic flavones (B4, B5, B6, B8, D6 and D7) had completely new structures. The AChE and BACE-1 inhibitory activities were tested, giving pIC50 3.47-4.59 (AChE) and 4.15-5.80 (BACE-1). Three compounds (B3, D5 and D6) exhibited the highest biological effects on both AChE and BACE-1. A molecular docking investigation was conducted to explain the experimental results. These molecules could be employed for further studies to discover new structures with dual action on both AChE and BACE-1 that could serve as novel therapies for AD.


Assuntos
Acetilcolinesterase/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores da Colinesterase/farmacologia , Simulação por Computador , Flavonas/síntese química , Flavonas/farmacologia , Acetilcolinesterase/química , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Flavonas/química , Modelos Lineares , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
11.
Molecules ; 25(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867308

RESUMO

Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are two attractive targets in the discovery of novel substances that could control multiple aspects of Alzheimer's disease (AD). Chalcones are the flavonoid derivatives with diverse bioactivities, including AChE and BACE-1 inhibition. In this study, a series of N-substituted-4-phenothiazine-chalcones was synthesized and tested for AChE and BACE-1 inhibitory activities. In silico models, including two-dimensional quantitative structure-activity relationship (2D-QSAR) for AChE and BACE-1 inhibitors, and molecular docking investigation, were developed to elucidate the experimental process. The results indicated that 13 chalcone derivatives were synthesized with relatively high yields (39-81%). The bioactivities of these substances were examined with pIC50 3.73-5.96 (AChE) and 5.20-6.81 (BACE-1). Eleven of synthesized chalcones had completely new structures. Two substances AC4 and AC12 exhibited the highest biological activities on both AChE and BACE-1. These substances could be employed for further researches. In addition to this, the present study results suggested that, by using a combination of two types of predictive models, 2D-QSAR and molecular docking, it was possible to estimate the biological activities of the prepared compounds with relatively high accuracy.


Assuntos
Chalconas , Inibidores da Colinesterase , Fenotiazinas , Chalconas/síntese química , Chalconas/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Fenotiazinas/síntese química , Fenotiazinas/farmacologia , Relação Quantitativa Estrutura-Atividade
12.
Mol Divers ; 20(4): 945-961, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27431577

RESUMO

The human P-glycoprotein (P-gp) efflux pump is of great interest for medicinal chemists because of its important role in multidrug resistance (MDR). Because of the high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of this transmembrane protein, ligand-based, and structure-based approaches which were machine learning, homology modeling, and molecular docking were combined for this study. In ligand-based approach, individual two-dimensional quantitative structure-activity relationship models were developed using different machine learning algorithms and subsequently combined into the Ensemble model which showed good performance on both the diverse training set and the validation sets. The applicability domain and the prediction quality of the developed models were also judged using the state-of-the-art methods and tools. In our structure-based approach, the P-gp structure and its binding region were predicted for a docking study to determine possible interactions between the ligands and the receptor. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening using prediction models and molecular docking in an attempt to restore cancer cell sensitivity to cytotoxic drugs.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Chalcona/análogos & derivados , Chalcona/química , Simulação por Computador , Modelos Moleculares , Bibliotecas de Moléculas Pequenas , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Algoritmos , Chalcona/farmacologia , Bases de Dados Factuais , Descoberta de Drogas , Ligantes , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
13.
Int J Mol Sci ; 17(10)2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27690022

RESUMO

Arginases are enzymes that are involved in many human diseases and have been targeted for new treatments. Here a series of cinnamides was designed, synthesized and evaluated in vitro and in silico for their inhibitory activity against mammalian arginase. Using a microassay on purified liver bovine arginase (b-ARG I), (E)-N-(2-phenylethyl)-3,4-dihydroxycinnamide, also named caffeic acid phenylamide (CAPA), was shown to be slightly more active than our natural reference inhibitor, chlorogenic acid (IC50 = 6.9 ± 1.3 and 10.6 ± 1.6 µM, respectively) but it remained less active that the synthetic reference inhibitor Nω-hydroxy-nor-l-arginine nor-NOHA (IC50 = 1.7 ± 0.2 µM). Enzyme kinetic studies showed that CAPA was a competitive inhibitor of arginase with Ki = 5.5 ± 1 µM. Whereas the activity of nor-NOHA was retained (IC50 = 5.7 ± 0.6 µM) using a human recombinant arginase I (h-ARG I), CAPA showed poorer activity (IC50 = 60.3 ± 7.8 µM). However, our study revealed that the cinnamoyl moiety and catechol function were important for inhibitory activity. Docking results on h-ARG I demonstrated that the caffeoyl moiety could penetrate into the active-site pocket of the enzyme, and the catechol function might interact with the cofactor Mn2+ and several crucial amino acid residues involved in the hydrolysis mechanism of arginase. The results of this study suggest that 3,4-dihydroxycinnamides are worth being considered as potential mammalian arginase inhibitors, and could be useful for further research on the development of new arginase inhibitors.

14.
Molecules ; 21(3): 329, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-27005608

RESUMO

Chemically diverse heterocyclic chalcones were prepared and evaluated for cytotoxicity, aiming to push forward potency and selectivity. They were tested against rhabdomyosarcoma (RMS) and noncancerous cell line (LLC-PK1). The influence of heteroaryl patterns on rings A and B was studied. Heterocycle functionalities on both rings, such as phenothiazine, thiophene, furan and pyridine were evaluated. Notably, the introduction of three methoxy groups at positions 3, 4, 5 on ring B appears to be critical for cytotoxicity. The best compound, with potent and selective cytotoxicity (IC50 = 12.51 µM in comparison with the value 10.84 µM of paclitaxel), contains a phenothiazine moiety on ring A and a thiophene heterocycle on ring B. Most of the potential compounds only show weak cytoxicity on the noncancerous cell line LLC-PK1.


Assuntos
Proliferação de Células/efeitos dos fármacos , Chalconas/farmacologia , Compostos Heterocíclicos/farmacologia , Rabdomiossarcoma/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Suínos
15.
J Theor Biol ; 385: 31-9, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26341387

RESUMO

Based upon molecular docking, this study aimed to find notable in silico neuraminidase 9 (NA9) point mutations of the avian influenza A H7N9 virus that possess a Zanamivir resistant property and to determine the lead compound capable of inhibiting these NA9 mutations. Seven amino acids (key residues) at the binding site of neuraminidase 9 responsible for Zanamivir-NA9 direct interactions were identified and 72 commonly occurring mutant NA9 versions were created using the Sybyl-X 2.0 software. The docking scores obtained after Zanamivir was bound to all mutant molecules of NA9 revealed 3 notable mutations R292W, R118P, and R292K that could greatly reduce the binding affinity of the medicine. These 3 mutant NA9 versions were then bound to each of 154 different molecules chosen from 5 groups of compounds to determine which molecule(s) might be capable of inhibiting mutant neuraminidase 9, leading to the discovery of the lead compound of potent mutant NA9 inhibitors. This compound, together with other mutations occurring to NA9 identified in the study, would be used as data for further research regarding neuraminidase inhibitors and synthesizing new viable medications used in the fight against the virus.


Assuntos
Antivirais/farmacocinética , Subtipo H7N9 do Vírus da Influenza A/genética , Neuraminidase/genética , Mutação Puntual , Zanamivir/farmacocinética , Antivirais/farmacologia , Sítios de Ligação , Biologia Computacional/métodos , Simulação por Computador , Farmacorresistência Viral/genética , Humanos , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Neuraminidase/metabolismo , Zanamivir/farmacologia
16.
Adv Pharmacol Pharm Sci ; 2024: 6655996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298460

RESUMO

Obesity, characterized by excessive adipose tissue accumulation, has emerged as a crucial determinant for a wide range of chronic medical conditions. The identification of effective interventions for obesity is of utmost importance. Widely researched antiobesity agents focus on pancreatic lipase, a significant therapeutic target. This study presented the evaluation of ten flavonoid compounds in terms of their inhibitory activities against pancreatic lipase, utilizing both in vitro and in silico approaches. The results indicated that all tested compounds demonstrated modest and weaker inhibitory activities compared to the reference compound, orlistat. Among the compounds investigated, F01 exhibited the highest potency, with an IC50 value of 17.68 ± 1.43 µM. The enzymatic inhibition kinetic analysis revealed that F01 operated through a competitive inhibition mechanism with a determined Ki of 7.16 µM. This value suggested a moderate binding affinity for the pancreatic lipase enzyme. Furthermore, the associated Vmax value was quantified at 0.03272 ΔA·min-1. In silico studies revealed that F01 displayed a binding mode similar to that of orlistat, despite lacking an active functional group capable of forming a covalent bond with Ser152 of the catalytic triad. However, F01 formed a hydrogen bond with this crucial amino acid. Furthermore, F01 interacted with other significant residues at the enzyme's active site, particularly those within the lid domain. Based on these findings, F01 demonstrates substantial potential as a candidate for further investigations.

17.
Cureus ; 16(6): e62380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39006557

RESUMO

Background In the face of the escalating COVID-19 pandemic amid shortages of medications and vaccines, a Vietnamese herbal formula known as Shen Cao Gan Jiang Tang (SCGJT) has been put into use for non-severe COVID-19 patients. This study aims to assess its efficacy and safety. Methods A multicenter, open-label, randomized controlled trial was conducted on 300 patients with non-severe COVID-19, randomly assigned into two groups: 150 receiving standard care (control group) and 150 receiving additional SCGJT for 10 days (SCGJT group). Time to resolution of symptoms, symptom severity, disease progression, time to discharge, the National Early Warning Score 2 (NEWS2) score, usage of Western drugs, time to viral clearance, and safety outcomes were continuously monitored. Results The SCGJT group exhibited faster symptom resolution (median: 9 vs. 13 days) and improved symptom severity, including cough, fatigue, hypogeusia, muscle aches, nasal congestion, runny nose, and sore throat, compared to the control group. Although there was a lower rate of severe progression in the SCGJT group (0.7% vs. 4.7%), the difference was not statistically significant. The time to discharge was significantly shorter in the SCGJT group (median: 7 vs. 8 days). Changes in the NEWS2 score did not show significant differences between groups. SCGJT has been demonstrated to reduce the need for symptomatic relief medications and hasten SARS-CoV-2 viral clearance. No adverse events were reported, and routine tests showed no significant differences. Conclusions SCGJT is safe and has potential clinical efficacy in non-severe COVID-19 patients. However, data regarding preventing severe progression remains inconclusive. Further studies should be conducted in light of the current state of the COVID-19 pandemic.

18.
Front Neurosci ; 17: 1116154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332871

RESUMO

Introduction: This research is a pilot, single-blinded study investigating heart rate variability (HRV) during auricular acupressure at the left sympathetic point (AH7) in healthy volunteers. Methods: There were 120 healthy volunteers with hemodynamic indexes (heart rate, blood pressure) within normal ranges, randomly divided into two groups AG and SG (in each group having a gender ratio 1:1, aged 20-29), to receive either auricular acupressure using ear seed (AG) or sham method using adhesive patches without seed (SG) at the left sympathetic point while lying in a supine position. Acupressure intervention lasted 25 min, and HRV was recorded by a photoplethysmography device-namely, Kyto HRM-2511B and Elite appliance. Results: Auricular acupressure at the left Sympathetic point (AG) led to a significant reduction in heart rate (HR) (p < 0.05) and a considerable increase in HRV parameters demonstrated by HF (High-frequency power) (p < 0.05), compared to sham auricular acupressure (SG). However, no significant changes in LF (Low-frequency power) and RR (Respiratory rate) (p > 0.05) were observed in both groups during the process. Conclusion: These findings suggest that auricular acupressure at the left sympathetic point may activate the parasympathetic nervous system while a healthy person is lying relaxed.

19.
J Biomol Struct Dyn ; 41(22): 13154-13167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36709441

RESUMO

The role of interleukin-8 (IL-8) and its receptor CXCR2 in inflammatory responses and tumor development and progression has been well documented. Our study aims to discover novel compounds as CXCR2 antagonists to block the IL-8 signaling pathway using an in silico drug design. Herein, a structure-based pharmacophore model was developed based on the crystal structure of inactive CXCR2 in a complex with an allosteric inhibitor. This model was validated and refined, followed by virtual screening with the ZINC15 database. Subsequent molecular docking allows for predicting the best pose of a ligand inside a receptor binding site. We found that the 35 top-ranked hits exhibited docking scores from -30.81 to -25.28 kJ/mol and better interaction potential comparing the reference inhibitor. Analysis of ADME and toxicity properties revealed the efficacy and safety of the selected seven compounds. To validate the stability of the protein-ligand complex structure MD simulations approach has also been performed and confirmed via the critical parameters. The MD results explained that the CXCR2 receptor bound with two best-proposed molecules, including ZINC77105530 and ZINC93176465, was quite stable states as observed from low RMSD, RMSF, Rg, SASA values, and high occupancy of the interaction types. Finally, our data identified that these compounds play as potential inhibitors of IL-8 signaling pathways with the MM/GBSA binding free energies of -41.77 ± 6.45 kcal/mol and -38.84 ± 6.16 kcal/mol, respectively.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Receptores de Interleucina-8B , Simulação de Acoplamento Molecular , Interleucina-8 , Ligantes , Transdução de Sinais
20.
J Biomol Struct Dyn ; 41(22): 12503-12520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762699

RESUMO

AcrAB-TolC tripartite efflux pump, which belongs to the RND superfamily, is a main multi-drug efflux system of Escherichia coli (E. coli) because of the broad resistance on various antibiotics. With the discovering of efflux pump inhibitors (EPIs), a combination between these and antibiotics is one of the most promising therapies. Therefore, building a virtual screening model with prediction capacities for the efflux pump inhibitory activities of candidates from DrugBank and ZINC15 dataset, is one of the key goals of this project. Based on the database of 170 diverse chemical structures collected from 28 research journals, two 2D-QSAR models and a 3D-pharmacophore model have been performed. On the AcrB protein (PDB 4DX7), two binding sites have been discovered that match to the hydrophobic trap in the distal pocket and the switch loop in the proximal pocket. After virtual screening processes, twenty candidate AcrAB-TolC inhibitors have been subjected to molecular dynamics simulations, binding free energy calculations and ADMET predictions. The results indicate that three compounds namely DB09233, DB02581, and DB15224 are potential inhibitors with ΔGbind of -42.30 ± 4.58, -40.76 ± 7.30 and -31.06 ± 7.63 kcal.mol-1, respectively.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Escherichia coli/química , Antibacterianos/farmacologia , Sítios de Ligação , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA