Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 13: 518, 2013 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-24180698

RESUMO

BACKGROUND: Colorectal cancer (CRC) is characterised by hypoxia, which activates gene transcription through hypoxia-inducible factors (HIF), as well as by expression of epidermal growth factor (EGF) and EGF receptors, targeting of which has been demonstrated to provide therapeutic benefit in CRC. Although EGF has been demonstrated to induce expression of angiogenic mediators, potential interactions in CRC between EGF-mediated signalling and the hypoxia/HIF pathway remain uncharacterised. METHODS: PCR-based profiling was applied to identify angiogenic genes in Caco-2 CRC cells regulated by hypoxia, the hypoxia mimetic dimethyloxallylglycine (DMOG) and/or EGF. Western blotting was used to determine the role of HIF-1alpha, HIF-2alpha and MAPK cell signalling in mediating the angiogenic responses. RESULTS: We identified a total of 9 angiogenic genes, including angiopoietin-like (ANGPTL) 4, ephrin (EFNA) 3, transforming growth factor (TGF) ß1 and vascular endothelial growth factor (VEGF), to be upregulated in a HIF dependent manner in Caco-2 CRC cells in response to both hypoxia and the hypoxia mimetic dimethyloxallylglycine (DMOG). Stimulation with EGF resulted in EGFR tyrosine autophosphorylation, activation of p42/p44 MAP kinases and stabilisation of HIF-1α and HIF-2α proteins. However, expression of 84 angiogenic genes remained unchanged in response to EGF alone. Crucially, addition of DMOG in combination with EGF significantly increased expression of a further 11 genes (in addition to the 9 genes upregulated in response to either DMOG alone or hypoxia alone). These additional genes included chemokines (CCL-11/eotaxin-1 and interleukin-8), collagen type IV α3 chain, integrin ß3 chain, TGFα and VEGF receptor KDR. CONCLUSION: These findings suggest that although EGFR phosphorylation activates the MAP kinase signalling and promotes HIF stabilisation in CRC, this alone is not sufficient to induce angiogenic gene expression. In contrast, HIF activation downstream of hypoxia/DMOG drives expression of genes such as ANGPTL4, EFNA3, TGFß1 and VEGF. Finally, HIF activation synergises with EGF-mediated signalling to additionally induce a unique sub-group of candidate angiogenic genes. Our data highlight the complex interrelationship between tumour hypoxia, EGF and angiogenesis in the pathogenesis of CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fator de Crescimento Epidérmico/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hipóxia/genética , Neovascularização Patológica/genética , Transcriptoma , Hipóxia Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Receptores ErbB/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Patológica/metabolismo
2.
Angiogenesis ; 14(3): 223-34, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21431303

RESUMO

The paradigm of a therapy aimed at inhibiting the formation of blood vessels, which would consequentially deprive cells and tissues of oxygen and nutrients, was born from the concept pioneered by the late Judah Folkman that blood vessel formation is central to the progression and maintenance of diseases which involve cellular metabolism and tissue expansion, and cancer in particular. The prototype targeted angiogenesis inhibitor anti-vascular endothelial growth factor (VEGF) antibody bevacizumab was approved in 2004 for colorectal cancer, and has since been approved for other cancers. Rheumatoid arthritis (RA) is a chronic inflammatory disease, during which inflamed tissue invades and destroys cartilage and bone. The tissue expansion, invasion, expression of cytokines and growth factors and areas of hypoxia which are a feature of RA have resulted in the hypothesis that angiogenesis inhibition may also be beneficial in RA, drawing on the success of bevacizumab. This review focuses on our current understanding of the importance of angiogenesis in RA, and on the lessons which may be learnt from the clinical experiences of angiogenesis blockade, particularly in colorectal cancer.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Bevacizumab , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA