Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
RNA ; 27(10): 1155-1172, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34210890

RESUMO

PIWI-interacting (pi)RNAs are small silencing RNAs that are crucial for the defense against transposable elements in germline tissues of animals. In Aedes aegypti mosquitoes, the piRNA pathway also contributes to gene regulation in somatic tissues, illustrating additional roles for piRNAs and PIWI proteins besides transposon repression. Here, we identify a highly abundant endogenous piRNA (propiR1) that associates with both Piwi4 and Piwi5. PropiR1-mediated target silencing requires base-pairing in the seed region with supplemental base-pairing at the piRNA 3' end. Yet, propiR1 represses a limited set of targets, among which is the lncRNA AAEL027353 (lnc027353). Slicing of lnc027353 initiates production of responder and trailer piRNAs from the cleavage fragment. Expression of propiR1 commences early during embryonic development and mediates degradation of maternally provided lnc027353 Both propiR1 and its lncRNA target are conserved in the closely related Aedes albopictus mosquito, underscoring the importance of this regulatory network for mosquito development.


Assuntos
Aedes/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , RNA Longo não Codificante/genética , RNA Interferente Pequeno/genética , Aedes/embriologia , Aedes/metabolismo , Animais , Pareamento de Bases , Sequência de Bases , Sequência Conservada , Embrião não Mamífero , Redes Reguladoras de Genes , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , RNA Longo não Codificante/metabolismo
2.
J Med Virol ; 95(11): e29245, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009693

RESUMO

Arthropod-borne flaviviruses include a number of medically relevant human pathogens such as the mosquito-borne dengue (DEN), Zika, and yellow fever (YF) viruses as well as tick-borne encephalitis virus (TBEV). All flaviviruses are antigenically related and anamnestic responses due to prior immunity can modulate antibody specificities in subsequent infections or vaccinations. In our study, we analyzed the induction of broadly flavivirus cross-reactive antibodies in tick-borne encephalitis (TBE) and DEN patients without or with prior flavivirus exposure through TBE and/or YF vaccination, and determined the contribution of these antibodies to TBE and dengue virus (DENV) neutralization. In addition, we investigated the formation of cross-reactive antibodies in TBE-vaccination breakthroughs (VBTs). A TBEV infection without prior YF or TBE vaccination induced predominantly type-specific antibodies. In contrast, high levels of broadly cross-reactive antibodies were found in samples from TBE patients prevaccinated against YF as well as in DEN patients prevaccinated against TBE and/or YF. While these cross-reactive antibodies did not neutralize TBEV, they were effective in neutralizing DENV. This discrepancy points to structural differences between the two viruses and indicates that broadly cross-reactive epitopes are less accessible in TBEV than in DENV. In TBE VBT infections, type-specific antibodies dominated the antibody response, thus revealing no difference from that of unvaccinated TBE patients. Our results emphasize significant differences in the structural properties of different flaviviruses that have an impact on the induction of broadly cross-reactive antibodies and their functional activities in virus neutralization.


Assuntos
Dengue , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Infecções por Flavivirus , Infecção por Zika virus , Zika virus , Animais , Humanos , Encefalite Transmitida por Carrapatos/prevenção & controle , Formação de Anticorpos , Anticorpos Antivirais , Infecções por Flavivirus/prevenção & controle , Vacinação , Dengue/prevenção & controle
3.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902020

RESUMO

The SARS-CoV-2 pandemic highlighted the need for broad-spectrum antivirals to increase our preparedness. Patients often require treatment by the time that blocking virus replication is less effective. Therefore, therapy should not only aim to inhibit the virus, but also to suppress pathogenic host responses, e.g., leading to microvascular changes and pulmonary damage. Clinical studies have previously linked SARS-CoV-2 infection to pathogenic intussusceptive angiogenesis in the lungs, involving the upregulation of angiogenic factors such as ANGPTL4. The ß-blocker propranolol is used to suppress aberrant ANGPTL4 expression in the treatment of hemangiomas. Therefore, we investigated the effect of propranolol on SARS-CoV-2 infection and the expression of ANGPTL4. SARS-CoV-2 upregulated ANGPTL4 in endothelial and other cells, which could be suppressed with R-propranolol. The compound also inhibited the replication of SARS-CoV-2 in Vero-E6 cells and reduced the viral load by up to ~2 logs in various cell lines and primary human airway epithelial cultures. R-propranolol was as effective as S-propranolol but lacks the latter's undesired ß-blocker activity. R-propranolol also inhibited SARS-CoV and MERS-CoV. It inhibited a post-entry step of the replication cycle, likely via host factors. The broad-spectrum antiviral effect and suppression of factors involved in pathogenic angiogenesis make R-propranolol an interesting molecule to further explore for the treatment of coronavirus infections.


Assuntos
COVID-19 , Animais , Chlorocebus aethiops , Humanos , Propranolol/farmacologia , SARS-CoV-2 , Células Vero , Linhagem Celular , Antivirais/farmacologia , Replicação Viral
4.
Artigo em Inglês | MEDLINE | ID: mdl-32513797

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic that originated in Wuhan, China, in December 2019 has impacted public health, society, the global economy, and the daily lives of billions of people in an unprecedented manner. There are currently no specific registered antiviral drugs to treat or prevent SARS-CoV-2 infections. Therefore, drug repurposing would be the fastest route to provide at least a temporary solution while better, more specific drugs are being developed. Here, we demonstrate that the antiparasitic drug suramin inhibits SARS-CoV-2 replication, protecting Vero E6 cells with a 50% effective concentration (EC50) of ∼20 µM, which is well below the maximum attainable level in human serum. Suramin also decreased the viral load by 2 to 3 logs when Vero E6 cells or cells of a human lung epithelial cell line (Calu-3 2B4 [referred to here as "Calu-3"]) were treated. Time-of-addition and plaque reduction assays performed on Vero E6 cells showed that suramin acts on early steps of the replication cycle, possibly preventing binding or entry of the virus. In a primary human airway epithelial cell culture model, suramin also inhibited the progression of infection. The results of our preclinical study warrant further investigation and suggest that it is worth evaluating whether suramin provides any benefit for COVID-19 patients, which obviously requires safety studies and well-designed, properly controlled randomized clinical trials.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Suramina/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Humanos , Pandemias , SARS-CoV-2 , Células Vero , Carga Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
5.
Clin Transl Immunology ; 13(4): e1503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623540

RESUMO

Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of a class of highly pathogenic coronaviruses. The large family of coronaviruses, however, also includes members that cause only mild symptoms, like human coronavirus-229E (HCoV-229E) or OC43 (HCoV-OC43). Unravelling how molecular (and cellular) pathophysiology differs between highly and low pathogenic coronaviruses is important for the development of therapeutic strategies. Methods: Here, we analysed the transcriptome of primary human bronchial epithelial cells (PBEC), differentiated at the air-liquid interface (ALI) after infection with SARS-CoV-2, SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV and HCoV-229E using bulk RNA sequencing. Results: ALI-PBEC were efficiently infected by all viruses, and SARS-CoV, MERS-CoV and HCoV-229E infection resulted in a largely similar transcriptional response. The response to SARS-CoV-2 infection differed markedly as it uniquely lacked the increase in expression of immediate early genes, including FOS, FOSB and NR4A1 that was observed with all other coronaviruses. This finding was further confirmed in publicly available experimental and clinical datasets. Interfering with NR4A1 signalling in Calu-3 lung epithelial cells resulted in a 100-fold reduction in extracellular RNA copies of SARS-CoV-2 and MERS-CoV, suggesting an involvement in virus replication. Furthermore, a lack in induction of interferon-related gene expression characterised the main difference between the highly pathogenic coronaviruses and low pathogenic viruses HCoV-229E and HCoV-OC43. Conclusion: Our results demonstrate a previously unknown suppression of a host response gene set by SARS-CoV-2 and confirm a difference in interferon-related gene expression between highly pathogenic and low pathogenic coronaviruses.

6.
Microbiol Spectr ; 11(3): e0327322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212560

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019, and the resulting pandemic has already caused the death of over 6 million people. There are currently few antivirals approved for treatment of the 2019 coronavirus disease (COVID-19), and more options would be beneficial, not only now but also to increase our preparedness for future coronavirus outbreaks. Honokiol is a small molecule from magnolia trees for which several biological effects have been reported, including anticancer and anti-inflammatory activities. Honokiol has also been shown to inhibit several viruses in cell culture. In this study, we determined that honokiol protected Vero E6 cells from SARS-CoV-2-mediated cytopathic effect, with a 50% effective concentration of 7.8 µM. In viral load reduction assays, honokiol decreased viral RNA copies as well as viral infectious progeny titers. The compound also inhibited SARS-CoV-2 replication in the more relevant human A549 cells expressing angiotensin converting enzyme 2 and transmembrane protease serine 2. Time-of-addition and other assays showed that honokiol inhibited virus replication at a post-entry step of the replication cycle. Honokiol was also effective against more recent variants of SARS-CoV-2, including Omicron, and it inhibited other human coronaviruses as well. Our study suggests that honokiol is an interesting molecule to be evaluated further in animal studies and, when successful, maybe even in clinical trials to investigate its effect on virus replication and pathogenic (inflammatory) host responses. IMPORTANCE Honokiol is a compound that shows both anti-inflammatory and antiviral effects, and therefore its effect on SARS-CoV-2 infection was assessed. This small molecule inhibited SARS-CoV-2 replication in various cell-based infection systems, with up to an ~1,000-fold reduction in virus titer. In contrast to earlier reports, our study clearly showed that honokiol acts on a postentry step of the replication cycle. Honokiol also inhibited different recent SARS-CoV-2 variants and other human coronaviruses (Middle East respiratory syndrome CoV and SARS-CoV), demonstrating its broad spectrum of antiviral activity. The anticoronavirus effect, combined with its anti-inflammatory properties, make honokiol an interesting compound to be further explored in animal coronavirus infection models.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Antivirais/farmacologia , Técnicas de Cultura de Células
7.
J Innate Immun ; 15(1): 562-580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36966527

RESUMO

The consequences of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can range from asymptomatic to fatal disease. Variations in epithelial susceptibility to SARS-CoV-2 infection depend on the anatomical location from the proximal to distal respiratory tract. However, the cellular biology underlying these variations is not completely understood. Thus, air-liquid interface cultures of well-differentiated primary human tracheal and bronchial epithelial cells were employed to study the impact of epithelial cellular composition and differentiation on SARS-CoV-2 infection by transcriptional (RNA sequencing) and immunofluorescent analyses. Changes of cellular composition were investigated by varying time of differentiation or by using specific compounds. We found that SARS-CoV-2 primarily infected not only ciliated cells but also goblet cells and transient secretory cells. Viral replication was impacted by differences in cellular composition, which depended on culturing time and anatomical origin. A higher percentage of ciliated cells correlated with a higher viral load. However, DAPT treatment, which increased the number of ciliated cells and reduced goblet cells, decreased viral load, indicating the contribution of goblet cells to infection. Cell entry factors, especially cathepsin L and transmembrane protease serine 2, were also affected by differentiation time. In conclusion, our study demonstrates that viral replication is affected by changes in cellular composition, especially in cells related to the mucociliary system. This could explain in part the variable susceptibility to SARS-CoV-2 infection between individuals and between anatomical locations in the respiratory tract.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Sistema Respiratório , Células Epiteliais , Biologia
8.
Elife ; 112022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36408799

RESUMO

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific CD4+ and CD8+ T cells in SARS-CoV-2-unexposed donors has been explained by the presence of T cells primed by other coronaviruses. However, based on the relatively high frequency and prevalence of cross-reactive T cells, we hypothesized cytomegalovirus (CMV) may induce these cross-reactive T cells. Stimulation of pre-pandemic cryo-preserved peripheral blood mononuclear cells (PBMCs) with SARS-CoV-2 peptides revealed that frequencies of SARS-CoV-2-specific T cells were higher in CMV-seropositive donors. Characterization of these T cells demonstrated that membrane-specific CD4+ and spike-specific CD8+ T cells originate from cross-reactive CMV-specific T cells. Spike-specific CD8+ T cells recognize SARS-CoV-2 spike peptide FVSNGTHWF (FVS) and dissimilar CMV pp65 peptide IPSINVHHY (IPS) presented by HLA-B*35:01. These dual IPS/FVS-reactive CD8+ T cells were found in multiple donors as well as severe COVID-19 patients and shared a common T cell receptor (TCR), illustrating that IPS/FVS-cross-reactivity is caused by a public TCR. In conclusion, CMV-specific T cells cross-react with SARS-CoV-2, despite low sequence homology between the two viruses, and may contribute to the pre-existing immunity against SARS-CoV-2.


Assuntos
COVID-19 , Infecções por Citomegalovirus , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Citomegalovirus , Leucócitos Mononucleares , Receptores de Antígenos de Linfócitos T , Linfócitos T CD4-Positivos
9.
PLoS Negl Trop Dis ; 14(2): e0008034, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017766

RESUMO

BACKGROUND: Zika virus has recently spread to South- and Central America, causing congenital birth defects and neurological complications. Many people at risk are flavivirus pre-immune due to prior infections with other flaviviruses (e.g. dengue virus) or flavivirus vaccinations. Since pre-existing cross-reactive immunity can potentially modulate antibody responses to Zika virus infection and may affect the outcome of disease, we analyzed fine-specificity as well as virus-neutralizing and infection-enhancing activities of antibodies induced by a primary Zika virus infection in flavivirus-naïve as well as yellow fever- and/or tick-borne encephalitis-vaccinated individuals. METHODOLOGY: Antibodies in sera from convalescent Zika patients with and without vaccine-induced immunity were assessed by ELISA with respect to Zika virus-specificity and flavivirus cross-reactivity. Functional analyses included virus neutralization and infection-enhancement. The contribution of IgM and cross-reactive antibodies to these properties was determined by depletion experiments. PRINCIPAL FINDINGS: Pre-existing flavivirus immunity had a strong influence on the antibody response in primary Zika virus infections, resulting in higher titers of broadly flavivirus cross-reactive antibodies and slightly lower levels of Zika virus-specific IgM. Antibody-dependent enhancement (ADE) of Zika virus was mediated by sub-neutralizing concentrations of specific IgG but not by cross-reactive antibodies. This effect was potently counteracted by the presence of neutralizing IgM. Broadly cross-reactive antibodies were able to both neutralize and enhance infection of dengue virus but not Zika virus, indicating a different exposure of conserved sequence elements in the two viruses. CONCLUSIONS: Our data point to an important role of flavivirus-specific IgM during the transient early stages of infection, by contributing substantially to neutralization and by counteracting ADE. In addition, our results highlight structural differences between strains of Zika and dengue viruses that are used for analyzing infection-enhancement by cross-reactive antibodies. These findings underscore the possible impact of specific antibody patterns on flavivirus disease and vaccination efficacy.


Assuntos
Anticorpos Antivirais/sangue , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Afinidade de Anticorpos , Antígenos Virais/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/sangue , Testes de Neutralização , Polietilenoglicóis , Proteínas do Envelope Viral/imunologia , Zika virus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA