Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mar Drugs ; 20(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200677

RESUMO

Omicron is an emerging SARS-CoV-2 variant, evolved from the Indian delta variant B.1.617.2, which is currently infecting worldwide. The spike glycoprotein, an important molecule in the pathogenesis and transmissions of SARS-CoV-2 variants, especially omicron B.1.1.529, shows 37 mutations distributed over the trimeric protein domains. Notably, fifteen of these mutations reside in the receptor-binding domain of the spike glycoprotein, which may alter transmissibility and infectivity. Additionally, the omicron spike evades neutralization more efficiently than the delta spike. Most of the therapeutic antibodies are ineffective against the omicron variant, and double immunization with BioNTech-Pfizer (BNT162b2) might not adequately protect against severe disease induced by omicron B.1.1.529. So far, no efficient antiviral drugs are available against omicron. The present study identified the promising inhibitors from seaweed's bioactive compounds to inhibit the omicron variant B.1.1.529. We have also compared the seaweed's compounds with the standard drugs ceftriaxone and cefuroxime, which were suggested as beneficial antiviral drugs in COVID-19 treatment. Our molecular docking analysis revealed that caffeic acid hexoside (-6.4 kcal/mol; RMSD = 2.382 Å) and phloretin (-6.3 kcal/mol; RMSD = 0.061 Å) from Sargassum wightii (S. wightii) showed the inhibitory effect against the crucial residues ASN417, SER496, TYR501, and HIS505, which are supported for the inviolable omicron and angiotensin-converting enzyme II (ACE2) receptor interaction. Cholestan-3-ol, 2-methylene-, (3beta, 5 alpha) (CMBA) (-6.0 kcal/mol; RMSD = 3.074 Å) from Corallina officinalis (C. officinalis) manifested the strong inhibitory effect against the omicron RBD mutated residues LEU452 and ALA484, was magnificently observed as the essential residues in Indian delta variant B.1.617.2 previously. The standard drugs (ceftriaxone and cefuroxime) showed no or less inhibitory effect against RBD of omicron B.1.1.529. The present study also emphasized the pharmacological properties of the considered chemical compounds. The results could be used to develop potent seaweed-based antiviral drugs and/or dietary supplements to treat omicron B.1.1529-infected patients.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Simulação de Acoplamento Molecular , SARS-CoV-2/metabolismo , Alga Marinha/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Antivirais/farmacologia , Humanos , Mutação , Ligação Proteica , Conformação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Tratamento Farmacológico da COVID-19
3.
Fish Physiol Biochem ; 41(3): 685-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25739351

RESUMO

Earlier, we reported spatial learning ability in goldfish (Carassius auratus) by using spatial paradigm with food reward. Therefore, we hypothesized that goldfish may use associated cue to integrate "where" and "what" for spatial memory. To test our hypothesis, we first trained goldfish to learn to cross the gate1, which is associated with spatial task. Subsequently, they were trained to learn to enter the task chamber and to identify the food reward chamber associated with visual cue (red/green light). Red and green lights were positioned randomly for each trial but always the food reward was kept in green chamber. In addition, to elucidate the role of the signalling cascade in spatial memory associated with visual cue, nicotinamide (NAM, 1000 mg/kg, i.p), a NAD(+) precursor, was used to inhibit the Sirtuin 1 (SIRT1) cyclic AMP response element binding protein (CREB) pathway. Fishes were trained for 5 days in a maze after treating with either vehicle (VEH, DD H2O) or NAM, and then, they were individually tested for memory. We found that VEH-treated fish learned and recalled the task successfully by showing less latency and making more correct choices than NAM-treated group. Subsequent analysis showed that NAM treatment significantly down-regulated the phosphorylation of extracellular signal-regulated kinase (ERK1/2), CREB, expression of SirT1 and brain-derived neurotrophic factor (Bdnf) in telencephalon. Taken together, our results provide behavioural evidence of spatial memory associated with visual cue in C. auratus, which could be regulated by ERK1/2-CREB-SirT1-Bdnf pathway.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Carpa Dourada/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória Espacial/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condicionamento Psicológico , Niacinamida/farmacologia , Fosforilação/efeitos dos fármacos , Estimulação Luminosa , Recompensa , Telencéfalo/efeitos dos fármacos
4.
Pathogens ; 13(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38392902

RESUMO

COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.

5.
Int J Biol Macromol ; 274(Pt 1): 133316, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908618

RESUMO

This study focuses on the optimization of Hydrastis canadensis-based nanocarriers in environmental and microbial applications like antibacterial and dye degradation. Hydrastis canadensis (H. canadensis) is loaded into the nanocarrier using a gelation method. Characterization involves pH analysis, UV-VIS spectrophotometry, scanning electron microscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, high-performance liquid chromatography, encapsulation efficiency. Further antimicrobial activity against Staphylococcus aureus and Escherichia coli were tested. Dye degradation was evaluated at concentrations of 1 % of high molecular (HM) and 1.5 % of low molecular (LM) chitosan nanoparticles with both 3C and 1000C concentrations of the drug. The obtained results confirm the presence of chitosan nanocarrier alongside the pure drug in 1 % HM and 1.5 % LM chitosan particles with a notable encapsulation efficiency activity in both 3C and 1000C concentrations. Antimicrobial studies were carried out using the agar well diffusion method and revealed a significant zone of inhibition of 20 mm and 25 mm for E. coli and S. aureus, respectively in chitosan nanocarrier-loaded samples compared to pure drug and chitosan nanocarriers samples. The dye degradation studies of four dyes methylene blue, methylene orange, methylene red, and safranin using both pure drugs and chitosan nanocarrier-loaded drugs showed the highest percentage of degradation (76 %) against methylene blue in the chitosan nanocarrier-drug loaded formulation. These findings cumulatively underscore chitosan nanoparticles can be used as an effective carrier for Hydrastis Canadensis, with enhanced antimicrobial and dye degradation capabilities. Varied concentrations and molecular weights highlight the versatility of the ionotropic gelation method in optimizing drug delivery. Enhanced efficacy of the nanocarrier was evident in the observed zone of inhibition in antimicrobial testing. The substantial degradation percentage in methylene blue emphasizes the formulation's applicability in environmental dye removal processes, with potential avenues for improvement explored through interactions between the chitosan nanocarrier and H. canadensis characteristics. Future investigations may focus on scaling up the optimized formulation for large-scale applications and exploring release kinetics and comprehensive toxicity assessments for a holistic understanding of potential environmental and biomedical implications.

6.
Foods ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731665

RESUMO

Aging is a time-dependent complex biological process of organisms with gradual deterioration of the anatomical and physiological functions. The role of gut microbiota is inevitable in the aging process. Probiotic interventions improve gut homeostasis and support healthy aging by enhancing beneficial species and microbial biodiversity in older adults. The present preliminary clinical trial delves into the impact of an 8-week Lactobacillus rhamnosus intervention (10 × 109 CFU per day) on the glycaemic index, lipid profile, and microbiome of elderly subjects. Body weight, body fat, fasting blood glucose, total cholesterol, triglyceride, high-density lipoprotein, and low-density lipoprotein (LDL) are assessed at baseline (Week 0) and after treatment (Week 8) in placebo and probiotic groups. Gaussian regression analysis highlights a significant improvement in LDL cholesterol in the probiotic group (p = 0.045). Microbiome analysis reveals numeric changes in taxonomic abundance at various levels. At the phylum level, Proteobacteria increases its relative frequency (RF) from 14.79 ± 5.58 at baseline to 23.46 ± 8.02 at 8 weeks, though statistically insignificant (p = 0.100). Compared to the placebo group, probiotic supplementations significantly increased the proteobacteria abundance. Genus-level analysis indicates changes in the abundance of several microbes, including Escherichia-Shigella, Akkermansia, and Bacteroides, but only Butyricimonas showed a statistically significant level of reduction in its abundance. Probiotic supplementations significantly altered the Escherichia-Shigella and Sutterella abundance compared to the placebo group. At the species level, Bacteroides vulgatus substantially increases after probiotic treatment (p = 0.021). Alpha and beta diversity assessments depict subtle shifts in microbial composition. The study has limitations, including a small sample size, short study duration, single-strain probiotic use, and lack of long-term follow-up. Despite these constraints, the study provides valuable preliminary insights into the multifaceted impact of L. rhamnosus on elderly subjects. Further detailed studies are required to define the beneficial effect of L. rhamnosus on the health status of elderly subjects.

7.
Pharmaceutics ; 15(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36839761

RESUMO

Complete recovery from infection, sepsis, injury, or trauma requires a vigorous response called inflammation. Inflammatory responses are essential in balancing tissue homeostasis to protect the tissue or resolve harmful stimuli and initiate the healing process. Identifying pathologically important inflammatory stimuli is important for a better understanding of the immune pathways, mechanisms of inflammatory diseases and organ dysfunctions, and inflammatory biomarkers and for developing therapeutic targets for inflammatory diseases. Nanoparticles are an efficient medical tool for diagnosing, preventing, and treating various diseases due to their interactions with biological molecules. Nanoparticles are unique in diagnosis and therapy in that they do not affect the surroundings or show toxicity. Modern medicine has undergone further development with nanoscale materials providing advanced experimentation, clinical use, and applications. Nanoparticle use in imaging, drug delivery, and treatment is growing rapidly owing to their spectacular accuracy, bioavailability, and cellular permeability. Mesoporous silica nanoparticles (MSNs) play a significant role in nano therapy with several advantages such as easy synthesis, loading, controllability, bioavailability over various surfaces, functionalization, and biocompatibility. MSNs can be used as theranostics in immune-modulatory nano systems to diagnose and treat inflammatory diseases. The application of MSNs in the preparation of drug-delivery systems has been steadily increasing in recent decades. Several preclinical studies suggest that an MSN-mediated drug-delivery system could aid in treating inflammatory diseases. This review explains the role of nanoparticles in medicine, synthesis, and functional properties of mesoporous silica nanoparticles and their therapeutic role against various inflammatory diseases.

8.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37259355

RESUMO

Hair health is associated with personal distress and psychological well-being. Even though hair loss (alopecia) does not affect humans' biological health, it affects an individual's social well-being. So, treatment for hair problems and improving hair health are obligatory. Several pharmacological and cosmeceutical treatment procedures are available to manage hair loss and promote growth. Several factors associated with hair health include genetics, disease or disorder, drugs, lifestyle, chemical exposure, and unhealthy habits such as smoking, diet, and stress. Synthetic and chemical formulations have side effects, so people are moving towards natural compounds-based remedies for their hair problems. The history of using phytochemicals for hair health has been documented anciently. However, scientific studies on hair loss have accelerated in recent decades. The current review summarizes the type of alopecia, the factor affecting hair health, alopecia treatments, phytochemicals' role in managing hair loss, and the mechanisms of hair growth-stimulating properties of phytochemicals. The literature survey suggested that phytochemicals are potent candidates for developing treatment procedures for different hair problems. Further detailed studies are needed to bring the scientific evidence to market.

9.
Foods ; 12(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36981226

RESUMO

Rice is a major cereal crop and a staple food for nearly 50% of people worldwide. Rice bran (RB) is a nutrient-rich by-product of rice processing. RB is rich in carbohydrates, fibers, proteins, lipids, minerals, and several trace elements (phosphorus, calcium, magnesium, potassium, and manganese). The extraction process and storage have influenced RB extracts and RB oil's quality. The RB composition has also varied on the rice cultivars. The color of RB indicates the richness of the bioactive compounds, especially anthocyanins. γ-oryzanol, tocopherols, tocotrienols, and unsaturated fatty acids are major components of RB oil. It has been established that RB supplementation could improve the host's health status. Several preclinical and clinical studies have reported that RB has antioxidant, anticancer, anti-inflammatory, anticolitis, and antidiabetic properties. The beneficial biological properties of RB are partially attributed to its ability to alter the host microbiome and help to maintain and restore eubiosis. Non-communicable diseases (NCDs), including heart disease, diabetes, cancer, and lung disease, account for 74% of deaths worldwide. Obesity is a global health problem and is a major reason for the development of NCDs. The medical procedures for managing obesity are expensive and long-term health supplements are required to maintain a healthy weight. Thus, cost-effective natural adjuvant therapeutic strategy is crucial to treat and manage obesity. Several studies have revealed that RB could be a complementary pharmacological candidate to treat obesity. A comprehensive document with basic information and recent scientific results on the anti-obesity activity of RB and RB compounds is obligatory. Thus, the current manuscript was prepared to summarize the composition of RB and the influence of RB on the host microbiome, possible mechanisms, and preclinical and clinical studies on the anti-obesity properties of RB. This study suggested that the consumption of RB oil and dietary RB extracts might assist in managing obesity-associated health consequences. Further, extended clinical studies in several ethnic groups are required to develop dietary RB-based functional and nutritional supplements, which could serve as an adjuvant therapeutic strategy to treat obesity.

10.
Brain Sci ; 13(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37626558

RESUMO

Parkinson's disease (PD) is a common multidimensional neurological disorder characterized by motor and non-motor features and is more prevalent in the elderly. Sleep disorders and cognitive disturbances are also significant characteristics of PD. Sleep is an important physiological process for normal human cognition and physical functioning. Sleep deprivation negatively impacts human physical, mental, and behavioral functions. Sleep disturbances include problems falling asleep, disturbances occurring during sleep, abnormal movements during sleep, insufficient sleep, and excessive sleep. The most recognizable and known sleep disorders, such as rapid-eye-movement behavior disorder (RBD), insomnia, excessive daytime sleepiness (EDS), restless legs syndrome (RLS), sleep-related breathing disorders (SRBDs), and circadian-rhythm-related sleep-wake disorders (CRSWDs), have been associated with PD. RBD and associated emotional disorders are common non-motor symptoms of PD. In individuals, sleep disorders and cognitive impairment are important prognostic factors for predicting progressing neurodegeneration and developing dementia conditions in PD. Studies have focused on RBD and its associated neurological changes and functional deficits in PD patients. Other risks, such as cognitive decline, anxiety, and depression, are related to RBD. Sleep-disorder diagnosis is challenging, especially in identifying the essential factors that disturb the sleep-wake cycle and the co-existence of other concomitant sleep issues, motor symptoms, and breathing disorders. Focusing on sleep patterns and their disturbances, including genetic and other neurochemical changes, helps us to better understand the central causes of sleep alterations and cognitive functions in PD patients. Relations between α-synuclein aggregation in the brain and gender differences in sleep disorders have been reported. The existing correlation between sleep disorders and levels of α-synuclein in the cerebrospinal fluid indicates the risk of progression of synucleinopathies. Multidirectional approaches are required to correlate sleep disorders and neuropsychiatric symptoms and diagnose sensitive biomarkers for neurodegeneration. The evaluation of sleep pattern disturbances and cognitive impairment may aid in the development of novel and effective treatments for PD.

11.
Foods ; 12(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959009

RESUMO

Obesity is a worldwide health problem with a complex interaction between gut microbiota and cognition. Several studies have demonstrated that probiotic treatments improve characteristics linked to obesity. The present study aimed to evaluate the effects of probiotic supplementation on the obesity indexes, inflammatory and oxidative stress markers, gut microbiota, and working memory in obese children. Ten obese children were assigned to receive the probiotics (8 × 109 CFU of Lactobacillus paracasei HII01 and Bifidobacterium animalis subsp. lactis) for 12 weeks. Demographic data were recorded. Urine and fecal samples were collected to evaluate biomarkers related to obesity and cognition. Behavioral working memory was assessed using the visual n-back test. Electroencephalography was employed to measure electrical activity during the visual n-back test. All parameters were evaluated at the baseline and after 12 weeks. The results revealed that probiotic supplementation significantly altered some gut microbial metabolites, gut microbiota, total antioxidant capacity, and neuroinflammatory markers. However, no significant changes were observed in the visual n-back test or electroencephalographic recordings after 12 weeks. In conclusion, the use of probiotics might be an alternative treatment that could improve the gut microbial ecosystem and microbial metabolites, as well as host antioxidant and neuroinflammation levels. The preliminary results indicated that further detailed prolonged studies are needed in order to determine the beneficial effects of the studied probiotics.

12.
Pharmaceuticals (Basel) ; 16(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37242478

RESUMO

Type 2 diabetes mellitus (T2DM) is one of the most highly prevalent metabolic disorders worldwide. Uncontrolled T2DM can lead to other health threats such as cardiac arrest, lower-limb amputation, blindness, stroke, impaired kidney function, and microvascular and macrovascular complications. Many studies have demonstrated the association between gut microbiota and diabetes development and probiotic supplementation in improving glycemic properties in T2DM. The study aimed to evaluate the influence of Bifidobacterium breve supplementation on glycemic control, lipid profile, and microbiome of T2DM subjects. Forty participants were randomly divided into two groups, and they received probiotics (50 × 109 CFU/day) or placebo interventions (corn starch; 10 mg/day) for 12 weeks. The changes in the blood-urea nitrogen (BUN), aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), fasting blood sugar (FBS), glycated hemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), creatinine levels, and other factors such as body-mass index, visceral fat, body fat, and body weight were assessed at baseline and after 12 weeks. B. breve supplementation significantly reduced BUN, creatinine, LDL, TG, and HbA1c levels compared to the placebo group. Significant changes were observed in the microbiome of the probiotic-treated group compared to the placebo group. Firmicutes and proteobacteria were predominant in the placebo and probiotic-treated groups. Genera Streptococcus, Butyricicoccus, and species Eubacterium hallii were significantly reduced in the probiotic-treated group compared to the placebo. Overall results suggested that B. breve supplementation could prevent worsening of representative clinical parameters in T2DM subjects. The current study has limitations, including fewer subjects, a single probiotic strain, and fewer metagenomic samples for microbiome analysis. Therefore, the results of the current study require further validation using more experimental subjects.

13.
Microorganisms ; 10(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422338

RESUMO

Alzheimer's (AD) and Parkinson's diseases (PD) are common in older people. Autism spectrum disorders (ASD), anxiety, depression, stress, and cognitive impairment are prevalent among people irrespective of age. The incidence of neurological disorders has been increasing in recent decades. Communication between the gut microbiota and the brain is intrinsically complicated, and it is necessary for the maintenance of the gut, brain, and immune functions of the host. The bidirectional link among the gut, gut microbiota and the brain is designated as the "microbiota-gut-brain axis." Gut microbiota modulates the host immune system and functions of tissue barriers such as gut mucosa and blood-brain barrier (BBB). Gut microbial dysfunction disturbs the gut-brain interplay and may contribute to various gut disorders, neurocognitive and psychiatric disorders. Probiotics could protect intestinal integrity, enhance gut functions, promote intestinal mucosal and BBB functions, and support the synthesis of brain-derived neurotrophic factors, which enhance neuronal survival and differentiation. Probiotics could be considered an adjunct therapy to manage metabolic and psychiatric diseases. Predominantly, Lactobacillus and Bifidobacterium strains are documented as potent probiotics, which help to maintain the bidirectional interactions between the gut and brain. The consumption of probiotics and probiotics containing fermented foods could improve the gut microbiota. The diet impacts gut microbiota, and a balanced diet could maintain the integrity of gut-brain communication by facilitating the production of neurotrophic factors and other neuropeptides. However, the beneficial effects of probiotics and diet might depend upon several factors, including strain, dosage, duration, age, host physiology, etc. This review summarizes the importance and involvement of probiotics and diet in neuroprotection and managing representative neurological disorders, injuries and mood states.

14.
Microorganisms ; 10(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889124

RESUMO

The nasal region is one of the distinct environments for the survival of various microbiota. The human microbial niche begins to inhabit the human body right from birth, and the microbiota survive as commensals or opportunistic pathogens throughout the life of humans in their bodies in various habitats. These microbial communities help to maintain a healthy microenvironment by preventing the attack of pathogens and being involved in immune regulation. Any dysbiosis of microbiota residing in the mucosal surfaces, such as the nasal passages, guts, and genital regions, causes immune modulation and severe infections. The coexistence of microorganisms in the mucosal layers of respiratory passage, resulting in infections due to their co-abundance and interactions, and the background molecular mechanisms responsible for such interactions, need to be considered for investigation. Additional clinical evaluations can explain the interactions among the nasal microbiota, nasal dysbiosis and neurodegenerative diseases (NDs). The respiratory airways usually act as a substratum place for the microbes and can act as the base for respiratory tract infections. The microbial metabolites and the microbes can cross the blood-brain barrier and may cause NDs, such as Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS). The scientific investigations on the potential role of the nasal microbiota in olfactory functions and the relationship between their dysfunction and neurological diseases are limited. Recently, the consequences of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in patients with neurological diseases are under exploration. The crosstalk between the gut and the nasal microbiota is highly influential, because their mucosal regions are the prominent microbial niche and are connected to the olfaction, immune regulation, and homeostasis of the central nervous system. Diet is one of the major factors, which strongly influences the mucosal membranes of the airways, gut, and lung. Unhealthy diet practices cause dysbiosis in gut microbiota and the mucosal barrier. The current review summarizes the interrelationship between the nasal microbiota dysbiosis, resulting olfactory dysfunctions, and the progression of NDs during aging and the involvement of coronavirus disease 2019 in provoking the NDs.

15.
Microorganisms ; 10(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36013962

RESUMO

Parkinson's disease (PD) is the second-most prevalent neurodegenerative or neuropsychiatric disease, affecting 1% of seniors worldwide. The gut microbiota (GM) is one of the key access controls for most diseases and disorders. Disturbance in the GM creates an imbalance in the function and circulation of metabolites, resulting in unhealthy conditions. Any dysbiosis could affect the function of the gut, consequently disturbing the equilibrium in the intestine, and provoking pro-inflammatory conditions in the gut lumen, which send signals to the central nervous system (CNS) through the vagus enteric nervous system, possibly disturbing the blood-brain barrier. The neuroinflammatory conditions in the brain cause accumulation of α-syn, and progressively develop PD. An important aspect of understanding and treating the disease is access to broad knowledge about the influence of dietary supplements on GM. Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Probiotic supplementation improves the function of the CNS, and improves the motor and non-motor symptoms of PD. Probiotic supplementation could be an adjuvant therapeutic method to manage PD. This review summarizes the role of GM in health, the GM-brain axis, the pathogenesis of PD, the role of GM and diet in PD, and the influence of probiotic supplementation on PD. The study encourages further detailed clinical trials in PD patients with probiotics, which aids in determining the involvement of GM, intestinal mediators, and neurological mediators in the treatment or management of PD.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32805442

RESUMO

Social defeat (SD) has been implicated in different modulatory effects of physiology and behaviour including learning and memory. We designed an experiment to test the functional role of monoamine oxidase (MAO) in regulation of synaptic transmission, synaptic plasticity and memory in goldfish Carassius auratus. To test this, individuals were divided into three groups: (i) control; (ii) social defeat (SD) group (individuals were subjected to social defeat for 10 min by Pseudotropheus demasoni) and (iii) SD + MAO inhibitor pre-treated group. All experimental groups were subjected to spatial learning and then memory. Our results suggest that SD affects a spatial learning and memory, whereas SD exerts no influence on MAOI pre-treated group. In addition, we noted that the expression of monoamine oxidase-A (MAO-A) was up-regulated and level of serotonin (5-hydroxytryptamine; 5-HT), expression of serotonin transporter (SERT), synaptophysin (SYP), synaptotagmin -1 (SYT-1), N-methyl-D-asparate (NMDA) receptors subunits (NR2A and NR2B), postsynaptic density-95 (PSD-95) and brain-derived neurotrophic factor (BDNF) were reduced by SD, while MAOIs pretreatment protects the effect of SD. Taken together, our results suggest that MAO is an essential component in the serotonergic system that finely tunes the level of 5-HT, which further regulates the molecules involving in synaptic transmission, synaptic plasticity and memory.


Assuntos
Carpa Dourada/fisiologia , Transtornos da Memória/prevenção & controle , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Derrota Social , Transmissão Sináptica/fisiologia , Tranilcipromina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Transmissão Sináptica/efeitos dos fármacos
17.
Foods ; 10(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34359450

RESUMO

The cluster of metabolic disorders includes obesity, dyslipidemia, hypertension, and glucose intolerance, increasing the risk of developing cardiovascular diseases and type 2 diabetes. Evolving proofs suggest an essential role of microbiota in human health and disease, including digestion, energy and glucose metabolism, immunomodulation, and brain function. The frequency of overweight is increasing, and the main causes for this are highly processed foods and less active lifestyles. Research is underway to unravel the probable relationship between obesity and intestinal microbiota. Here, we propose a method to understand and elucidate the synergistic function of prebiotics and probiotics in treating obesity. The biomarkers of obesity, such as cholesterol, gut permeability, oxidative stress, bacterial toxins, cytokines, and short-chain fatty acids, were analyzed in Thai obese individuals after being supplemented with a synbiotic preparation containing Lactobacillus paracasei, Bifidobacterium longum, Bifidobacterium breve, inulin, and fructooligosaccharide. The results reveal that the supplementation of synbiotics significantly altered the obesity-associated biomarkers in an appositive way. Further studies are warranted to use synbiotics as an adjuvant therapy for the management of obesity-related health issues.

18.
Ann Neurosci ; 25(2): 90-97, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30140120

RESUMO

BACKGROUND: Earlier, we showed that nicotinamide (NAM) treatment impairs spatial memory through the downregulation of CREB-Sirt 1-brain-derived neurotrophic factor (Bdnf) signaling cascade. PURPOSE: In this study, we examine whether NAM treatment alters CREB-regulated genes through -microRNAs. METHOD: To test this hypothesis, goldfish (Carassius auratus) were divided into 2 groups: (i) vehicle group (VEH; double distilled water intra-peritoneally [i.p.]) (ii) nicotinamide group (NAM, 1,000 mg/kg, i.p.) and again divided into VEH untrained/trained, NAM untrained/trained. One hour after receiving VEH or NAM, individuals were subject to contextual fear conditioning (CFC) training. After 24 h, both the groups were tested for contextual fear memory. Subsequently, miR-132/212 levels, regulated immediate-early genes (IEGs: C-fos and EGR-1) and Bdnf but not its receptor. -TrkB1were examined following 0' and 60' min after training, and compared with the untrained group. RESULTS: We observed that NAM treatment significantly impaired fear memory. Further, the analysis showed that miR-132 level was not altered, but miR-212 level was significantly upregulated after CFC training only in NAM-treated fish. We also found that NAM treatment downregulated IEGs and Bdnf but not its receptor TrkB1. CONCLUSIONS: Present study suggests that NAM-treatment impaired fear memory and control IEGs, Bdnf and TrkB1 expression by differentially regulating miR-132 and 212.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA