Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Plant Biotechnol J ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715250

RESUMO

MicroRNA169 (miR169) has been implicated in multi-stress regulation in annual species such as Arabidopsis, maize and rice. However, there is a lack of experimental functional and mechanistic studies of miR169 in plants, especially in perennial species, and its impact on plant growth and development remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is a C3 cool-season perennial turfgrass of significant environmental and economic importance. In this study, we generated both miR169 overexpression and knockdown transgenic creeping bentgrass lines. We found that miR169 acts as a positive regulator in abiotic stress responses but is negatively associated with plant growth and development, playing multiple critical roles in the growth and environmental adaptation of creeping bentgrass. These roles include differentiated spatial hormone accumulation patterns associated with growth and stress accommodation, elevated antioxidant activity that alleviates oxidative damage induced by stress, ion-channelling membrane components for maintaining homeostasis under saline conditions, and potential cross-talks with stress-regulating transcription factors such as AsHsfA and AsWRKYs. Our results unravel the role of miR169 in modulating plant development and stress responses in perennial grass species. This underlines the potential of manipulating miR169 to generate crop cultivars with desirable traits to meet diverse agricultural demands.

2.
Plant J ; 111(1): 54-71, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35426964

RESUMO

Rhizobiome confer stress tolerance to ruderal plants, yet their ability to alleviate stress in crops is widely debated, and the associated mechanisms are poorly understood. We monitored the drought tolerance of maize (Zea mays) as influenced by the cross-inoculation of rhizobiota from a congeneric ruderal grass Andropogon virginicus (andropogon-inoculum), and rhizobiota from organic farm maintained under mesic condition (organic-inoculum). Across drought treatments (40% field capacity), maize that received andropogon-inoculum produced two-fold greater biomass. This drought tolerance translated to a similar leaf metabolomic composition as that of the well-watered control (80% field capacity) and reduced oxidative damage, despite a lower activity of antioxidant enzymes. At a morphological-level, drought tolerance was associated with an increase in specific root length and surface area facilitated by the homeostasis of phytohormones promoting root branching. At a proteome-level, the drought tolerance was associated with upregulation of proteins related to glutathione metabolism and endoplasmic reticulum-associated degradation process. Fungal taxa belonging to Ascomycota, Mortierellomycota, Archaeorhizomycetes, Dothideomycetes, and Agaricomycetes in andropogon-inoculum were identified as potential indicators of drought tolerance. Our study provides a mechanistic understanding of the rhizobiome-facilitated drought tolerance and demonstrates a better path to utilize plant-rhizobiome associations to enhance drought tolerance in crops.


Assuntos
Secas , Zea mays , Produtos Agrícolas/metabolismo , Degradação Associada com o Retículo Endoplasmático , Proteoma/metabolismo , Estresse Fisiológico , Zea mays/metabolismo
3.
New Phytol ; 236(6): 2358-2373, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36168143

RESUMO

Lignin is an important root chemical component that is widely used in biogeochemical models to predict root decomposition. Across ecological studies, lignin abundance has been characterized using both proximate and lignin-specific methods, without much understanding of their comparability. This uncertainty in estimating lignin limits our ability to comprehend the mechanisms regulating root decomposition and to integrate lignin data for large-scale syntheses. We compared five methods of estimating lignin abundance and composition in fine roots across 34 phylogenetically diverse tree species. We also assessed the feasibility of high-throughput techniques for fast-screening of root lignin. Although acid-insoluble fraction (AIF) has been used to infer root lignin and decomposition, AIF-defined lignin content was disconnected from the lignin abundance estimated by techniques that specifically measure lignin-derived monomers. While lignin-specific techniques indicated lignin contents of 2-10% (w/w) in roots, AIF-defined lignin contents were c. 5-10-fold higher, and their interspecific variation was found to be largely unrelated to that determined using lignin-specific techniques. High-throughput pyrolysis-gas chromatography-mass spectrometry, when combined with quantitative modeling, accurately predicted lignin abundance and composition, highlighting its feasibility for quicker assessment of lignin in roots. We demonstrate that AIF should be interpreted separately from lignin in fine roots as its abundance is unrelated to that of lignin polymers. This study provides the basis for informed decision-making with respect to lignin methodology in ecology.


Assuntos
Lignina , Árvores , Árvores/química , Lignina/química , Cromatografia Gasosa-Espectrometria de Massas
4.
Plant Cell Physiol ; 62(7): 1199-1214, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34015110

RESUMO

The strength of the stalk rind, measured as rind penetrometer resistance (RPR), is an important contributor to stalk lodging resistance. To enhance the genetic architecture of RPR, we combined selection mapping on populations developed by 15 cycles of divergent selection for high and low RPR with time-course transcriptomic and metabolic analyses of the stalks. Divergent selection significantly altered allele frequencies of 3,656 and 3,412 single- nucleotide polymorphisms (SNPs) in the high and low RPR populations, respectively. Surprisingly, only 110 (1.56%) SNPs under selection were common in both populations, while the majority (98.4%) were unique to each population. This result indicated that high and low RPR phenotypes are produced by biologically distinct mechanisms. Remarkably, regions harboring lignin and polysaccharide genes were preferentially selected in high and low RPR populations, respectively. The preferential selection was manifested as higher lignification and increased saccharification of the high and low RPR stalks, respectively. The evolution of distinct gene classes according to the direction of selection was unexpected in the context of parallel evolution and demonstrated that selection for a trait, albeit in different directions, does not necessarily act on the same genes. Tricin, a grass-specific monolignol that initiates the incorporation of lignin in the cell walls, emerged as a key determinant of RPR. Integration of selection mapping and transcriptomic analyses with published genetic studies of RPR identified several candidate genes including ZmMYB31, ZmNAC25, ZmMADS1, ZmEXPA2, ZmIAA41 and hk5. These findings provide a foundation for an enhanced understanding of RPR and the improvement of stalk lodging resistance.


Assuntos
Zea mays/genética , Parede Celular/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica , Frequência do Gene , Metabolômica , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Zea mays/anatomia & histologia
5.
New Phytol ; 232(3): 1259-1271, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34137048

RESUMO

Recent studies on fine root functional traits proposed a root economics hypothesis where adaptations associated with mycorrhizal dependency strongly influence the organization of root traits, forming a dominant axis of trait covariation unique to roots. This conclusion, however, is based on tradeoffs of a few widely studied root traits. It is unknown how other functional traits fit into this mycorrhizal-collaboration gradient. Here, we provide a significant extension to the field of root ecology by examining how fine root secondary compounds coordinate with other root traits. We analyzed a dataset integrating compound-specific chemistry, morphology and anatomy of fine roots and leaves from 34 temperate tree species spanning major angiosperm lineages. Our data uncovered previously undocumented coordination where root chemistry, morphology and anatomy covary with each other. This coordination, aligned with mycorrhizal colonization, reflects tradeoffs between chemical protection and mycorrhizal dependency, and provides mechanistic support for the mycorrhizal-collaboration gradient. We also found remarkable phylogenetic structuring in root chemistry. These patterns were not mirrored by leaves. Furthermore, chemical protection was largely decoupled from the leaf economics spectrum. Our results unveil broad organization of root chemistry, demonstrate unique belowground adaptions, and suggest that root strategies and phylogeny could impact biogeochemical cycles through their links with root chemistry.


Assuntos
Magnoliopsida , Micorrizas , Filogenia , Folhas de Planta , Raízes de Plantas
6.
New Phytol ; 232(3): 973-1122, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34608637

RESUMO

In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.


Assuntos
Ecossistema , Plantas , Bases de Dados Factuais , Ecologia , Fenótipo
7.
Plant Cell Physiol ; 61(6): 1028-1040, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311031

RESUMO

Cellular homeostasis is maintained by the proteasomal degradation of regulatory and misfolded proteins, which sustains the amino acid pool. Although proteasomes alleviate stress by removing damaged proteins, mounting evidence indicates that severe stress caused by salt, metal(oids), and some pathogens can impair the proteasome. However, the consequences of proteasome inhibition in plants are not well understood and even less is known about how its malfunctioning alters metabolic activities. Lethality causes by proteasome inhibition in non-photosynthetic organisms stem from amino acid depletion, and we hypothesized that plants respond to proteasome inhibition by increasing amino acid biosynthesis. To address these questions, the short-term effects of proteasome inhibition were monitored for 3, 8 and 48 h in the roots of Brassica napus treated with the proteasome inhibitor MG132. Proteasome inhibition did not affect the pool of free amino acids after 48 h, which was attributed to elevated de novo amino acid synthesis; these observations coincided with increased levels of sulfite reductase and nitrate reductase activities at earlier time points. However, elevated amino acid synthesis failed to fully restore protein synthesis. In addition, transcriptome analysis points to perturbed abscisic acid signaling and decreased sugar metabolism after 8 h of proteasome inhibition. Proteasome inhibition increased the levels of alternative oxidase but decreased aconitase activity, most sugars and tricarboxylic acid metabolites in root tissue after 48 h. These metabolic responses occurred before we observed an accumulation of reactive oxygen species. We discuss how the metabolic response to proteasome inhibition and abiotic stress partially overlap in plants.


Assuntos
Aminoácidos/biossíntese , Brassica napus/metabolismo , Raízes de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Trifosfato de Adenosina/metabolismo , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Respiração Celular , Dimetil Sulfóxido/farmacologia , Glutamato-Amônia Ligase/metabolismo , Consumo de Oxigênio , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
8.
New Phytol ; 228(6): 1835-1851, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32750158

RESUMO

Fine roots of trees exhibit varying degree of plasticity to adapt to environmental stress. Although the morphological and physiological plasticity of roots has been well studied, less known are the accompanying changes in the chemical composite (chemical plasticity) of fine roots, which regulates both root function and soil carbon sequestration. We investigated the changes in quantity, composition and localization of phenolic compounds in fine root orders of Quercus alba and Quercus rubra subjected to drought stress. In both species the total quantity of lignins varied only by root orders, where the distal (first and second) root orders had lower lignin compared to higher orders. Despite a lower lignin content, the distal root orders had higher content of guaiacyl lignin and bound phenolics that would provide a greater meshing of lignocellulosic matrix, and thus a higher tissue integrity. Unlike lignins, drought altered the quantity and composition of tannins. In Q. alba, the ellagitannins decreased in the distal root orders exposed to drought, while the fiber-bound condensed tannnins increased. The lower content of ellagitannins with antimicrobial properties under drought reveals an adaptive response by fine roots to promote symbiotic association, as evidenced by the higher colonization of ectomycorrhizal fungi. Our study revealed that, when exposed to drought, the composition of heteropolymers are strategically varied across fine root orders, so as to provide a greater root function without compromising the tissue protection.


Assuntos
Micorrizas , Quercus , Secas , Raízes de Plantas , Árvores
9.
Environ Sci Technol ; 54(11): 6602-6609, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32319755

RESUMO

Plants could mobilize (dissolution followed by vertical transport) uranium (U) from mineral forms that are otherwise stable. However, the variability of this plant-mediated mobilization of U as a function of the presence of various essential plant nutrients contained in these minerals remains unknown. A series of column experiments were conducted using Andropogon virginicus to quantify the vertical transport of U from stable mineral forms as influenced by the chemical and physical coexistence of U with the essential nutrient, phosphorus (P). The presence of plants significantly increased the vertical migration of U only when U was precipitated with P (UO2HPO4·4H2O; chernikovite) but not from UO2 (uraninite) that lacks any essential plant nutrient. The U dissolution was further increased when chernikovite co-occurred with a sparingly available form of P (FePO4) under P-limited growing conditions. Similarly, A. virginicus accumulated the highest amount of U from chernikovite (0.05 mg/g) in the presence of FePO4 compared to that of uraninite (no-P) and chernikovite supplemented with KH2PO4. These results signify an increased plant-mediated dissolution, uptake, and leaching of radioactive contaminants in soils that are nutrient deficient, a key factor that should be considered in management at legacy contamination sites.


Assuntos
Urânio , Poluentes Radioativos da Água , Minerais , Fósforo , Solubilidade , Urânio/análise , Poluentes Radioativos da Água/análise
11.
Plant Cell Environ ; 42(9): 2597-2611, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31158300

RESUMO

Source-sink communication is one of the key regulators of senescence; however, the mechanisms underlying such regulation are largely unknown. We analysed senescence induced by the lack of grain sink in maize, termed source-sink regulated senescence (SSRS), and compared the associated physiological and metabolic changes with those accompanying natural senescence. Phenotypic characterization of 31 diverse field-grown inbreds revealed substantial variation for both SSRS and natural senescence. Partitioning of excess carbohydrates to alternative sinks, mainly internodes and husks, emerged as a critical mechanism underlying both SSRS and stay-green. Time-course analyses of SSRS sensitive (B73) and resistant (PHG35) inbreds confirmed the role of sugar partitioning in SSRS and stay-green. Elevated hemicellulose content in PHG35 internodes highlighted the role of the cell wall as a significant alternative sink. Sugar signalling emerged as an important regulator of SSRS as evident from an increased accumulation of trehalose-6-phosphate and decreased transcript levels of snf1-related protein kinase1, two signalling components associated with senescence, in B73. These findings demonstrate a crucial role of sugar partitioning, signalling, and utilization in SSRS. Available genetic variation for SSRS and a better understanding of the underlying mechanisms would help modify sugar partitioning and senescence to enhance the productivity of maize and related grasses.


Assuntos
Metabolismo dos Carboidratos , Senescência Celular , Folhas de Planta/fisiologia , Açúcares/metabolismo , Zea mays/metabolismo , Variação Genética , Zea mays/genética , Zea mays/crescimento & desenvolvimento
12.
Glob Chang Biol ; 24(4): 1428-1451, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28986956

RESUMO

Decomposition of plant litter is a fundamental ecosystem process that can act as a feedback to climate change by simultaneously influencing both the productivity of ecosystems and the flux of carbon dioxide from the soil. The influence of climate on decomposition from a postsenescence perspective is relatively well known; in particular, climate is known to regulate the rate of litter decomposition via its direct influence on the reaction kinetics and microbial physiology on processes downstream of tissue senescence. Climate can alter plant metabolism during the formative stage of tissues and could shape the final chemical composition of plant litter that is available for decomposition, and thus indirectly influence decomposition; however, these indirect effects are relatively poorly understood. Climatic stress disrupts cellular homeostasis in plants and results in the reprogramming of primary and secondary metabolic pathways, which leads to changes in the quantity, composition, and organization of small molecules and recalcitrant heteropolymers, including lignins, tannins, suberins, and cuticle within the plant tissue matrix. Furthermore, by regulating metabolism during tissue senescence, climate influences the resorption of nutrients from senescing tissues. Thus, the final chemical composition of plant litter that forms the substrate of decomposition is a combined product of presenescence physiological processes through the production and resorption of metabolites. The changes in quantity, composition, and localization of the molecular construct of the litter could enhance or hinder tissue decomposition and soil nutrient cycling by altering the recalcitrance of the lignocellulose matrix, the composition of microbial communities, and the activity of microbial exo-enzymes via various complexation reactions. Also, the climate-induced changes in the molecular composition of litter could differentially influence litter decomposition and soil nutrient cycling. Compared with temperate ecosystems, the indirect effects of climate on litter decomposition in the tropics are not well understood, which underscores the need to conduct additional studies in tropical biomes. We also emphasize the need to focus on how climatic stress affects the root chemistry as roots contribute significantly to biogeochemical cycling, and on utilizing more robust analytical approaches to capture the molecular composition of tissue matrix that fuel microbial metabolism.


Assuntos
Biodegradação Ambiental , Ecossistema , Plantas , Dióxido de Carbono/metabolismo , Mudança Climática , Lignina/metabolismo , Folhas de Planta/metabolismo , Solo/química , Estresse Fisiológico
13.
Environ Sci Technol ; 52(14): 7652-7662, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29722538

RESUMO

Apparent deficiency of soil mineral nutrients often triggers specific physio-morphological changes in plants, and some of these changes could also inadvertently increase the ability of plants to mobilize radionuclides from stable mineral forms. This work, through a series of sand-culture, hydroponics, and batch-equilibration experiments, investigated the differential ability of root exudates of Andropogon virginicus grown under conditions with variable phosphorus (P) availability (KH2PO4, FePO4, Ca3(PO4)2, and no P) to solubilize uranium (U) from the uranyl phosphate mineral Chernikovite. The mineral form of P, and hence the bioavailability of P, affected the overall composition of the root exudates. The lower bioavailable forms of P (FePO4 and Ca3(PO4)2), but not the complete absence of P, resulted in a higher abundance of root metabolites with chelating capacity at 72 hrs after treatment application. In treatments with lower P-bioavailability, the physiological amino acid concentration inside of the roots increased, whereas the concentration of organic acids in the roots decreased due to the active exudation. In batch dissolution experiments, the organic acids, but not amino acids, increase the dissolution U from Chernikovite. The root exudate matrix of plants exposed to low available forms of P induced a >60% increase in U dissolution from Chernikovite due to 5-16 times greater abundance of organic acids in these treatments. However, this was ca. 70% of the theoretical dissolution achievable by this exudate matrix. These results highlight the potential of using active management of soil P as an effective tool to alter the plant-mediated mobilization of U in contaminated soil.


Assuntos
Fósforo , Urânio , Minerais , Raízes de Plantas , Solo
15.
Glob Chang Biol ; 23(10): 4002-4018, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28480539

RESUMO

Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant-microbe-mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant-derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial-derived C in the silt-clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above-ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0-5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of the higher surface area of soil minerals at this site. The plant biomarkers were lower in the aggregate fractions of the P. lobata-invaded soils, compared with noninvaded pine stands, potentially suggesting a microbial co-metabolism of pine-derived compounds. These results highlight the complex interactions among litter chemistry, soil biota, and minerals in mediating soil C storage in unmanaged ecosystems; these interactions are particularly important under global changes that may alter plant species composition and hence the quantity and chemistry of litter inputs in terrestrial ecosystems.


Assuntos
Carbono , Ecossistema , Solo , Minerais , Folhas de Planta , Microbiologia do Solo
16.
Environ Sci Technol ; 51(18): 10729-10735, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28849653

RESUMO

The Department of Defense has developed explosives with the insensitive munition 2,4-dinitroanisole (DNAN), to prevent accidental detonations during training and operations. Understanding the fate and transport of DNAN is necessary to assess the risk it may represent to groundwater once the new ordnance is routinely produced and used. Experiments with ferrous iron or anthrahydroquinone-2,6-disulfonate (AH2QDS) were conducted from pH 6.0 to 9.0 with initial DNAN concentrations of 100 µM. DNAN was degraded by 1.2 mM Fe(II) at pH 7, 8, and 9, and rates increased with increasing pH. Greater than 90% of the initial 100 µM DNAN was reduced within 10 min at pH 9, and all DNAN was reduced within 1 h. AH2QDS reduced DNAN at all pH values tested. Cells of Geobacter metallireducens were added in the presence and absence of Fe(III) and/or anthraquinone-2,6-disulfonate (AQDS), and DNAN was also reduced in all cell suspensions. Cells reduced the compound directly, but both AQDS and Fe(III) increased the reaction rate, via the production of AH2QDS and/or Fe(II). DNAN was degraded via two intermediates: 2-methoxy-5-nitroaniline and 4-methoxy-3-nitroaniline, to the amine product 2,4-diaminoanisole. These data suggest that an effective strategy can be developed for DNAN attenuation based on combined biological-abiotic reactions mediated by Fe(III)-reducing microorganisms.


Assuntos
Anisóis/metabolismo , Geobacter , Compostos de Anilina , Anisóis/química , Antraquinonas/química , Elétrons , Ferro , Oxirredução , Risco
17.
J Chem Ecol ; 43(2): 129-142, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28050732

RESUMO

Environmental stress hinders growth of plants and commonly results in the accumulation of carbon-based defense compounds. However, the dynamics of nitrogen (N)-containing defense compounds are less predictable under environmental stress. The impact of nutrient deficiency on plant defenses that require the metabolic conversion of a less toxic compound to a more potent toxin is even more poorly understood. We evaluated the effects of nitrogen (N) and potassium (K) deficiency and simulated herbivory on the concentration of metabolites including glucosinolates (GSLs), on the conversion of GSLs to more toxic isothiocyanates (ITCs), and on the activity of myrosinase (MYR) in leaves of Brassica juncea and Brassica nigra. Both species contained GSLs, predominantly sinigrin, but also derivatives of glucobrassicin. Compared to the control, N deficiency increased the sinigrin concentration in both species. Methyl jasmonate (MeJA) application increased sinigrin production in B. junceae, whereas in B. nigra MeJA increased sinigrin only under K-deficiency. Compared to the aliphatic-glucosinolates, MeJA application produced a greater compositional change in the profiles of indolic-glucosinolates. In both species the increase in sinigrin content of the tissue was associated with a decrease in its overall nutritive value as assessed by the content of sugars and amino acids. In B. juncea, application of MeJA decreased the conversion of sinigrin to allyl isothiocyanate (AITC) under both N and K deficiency. The potential activity of MYR decreased in both species under N deficiency. The reduced conversion of sinigrin to AITC and the lower activity of MYR suggest that the GSL-ITC defense system might have a limited efficiency in deterring generalist herbivores under environmental stress.


Assuntos
Glucosinolatos/metabolismo , Herbivoria , Modelos Biológicos , Mostardeira/metabolismo , Nitrogênio/deficiência , Potássio/metabolismo , Acetatos/farmacologia , Ciclopentanos/farmacologia , Glicosídeo Hidrolases/metabolismo , Mostardeira/crescimento & desenvolvimento , Mostardeira/parasitologia , Oxilipinas/farmacologia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Estresse Fisiológico
18.
New Phytol ; 206(4): 1261-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25858344

RESUMO

Fine roots constitute a significant source of plant productivity and litter turnover across terrestrial ecosystems, but less is known about the quantitative and qualitative profile of phenolic compounds within the fine-root architecture, which could regulate the potential contribution of plant roots to the soil organic matter pool. To understand the linkage between traditional macro-elemental and morphological traits of roots and their molecular-level carbon chemistry, we analyzed seasonal variations in monomeric yields of the free, bound, and lignin phenols in fine roots (distal five orders) and leaves of Ardisia quinquegona. Fine roots contained two-fold higher concentrations of bound phenols and three-fold higher concentrations of lignin phenols than leaves. Within fine roots, the concentrations of free and bound phenols decreased with increasing root order, and seasonal variation in the phenolic profile was more evident in lower order than in higher order roots. The morphological and macro-elemental root traits were decoupled from the quantity, composition and tissue association of phenolic compounds, revealing the potential inability of these traditional parameters to capture the molecular identity of phenolic carbon within the fine-root architecture and between fine roots and leaves. Our results highlight the molecular-level heterogeneity in phenolic carbon composition within the fine-root architecture, and imply that traits that capture the molecular identity of the root construct might better predict the decomposition dynamics within fine-root orders.


Assuntos
Carbono/metabolismo , Fenóis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , China , Análise Multivariada , Nitrogênio/metabolismo , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Análise de Componente Principal , Estações do Ano , Especificidade da Espécie
19.
Glob Chang Biol ; 21(11): 4177-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26179236

RESUMO

The process of nutrient retranslocation from plant leaves during senescence subsequently affects both plant growth and soil nutrient cycling; changes in either of these could potentially feed back to climate change. Although elemental nutrient resorption has been shown to respond modestly to temperature and precipitation, we know remarkably little about the influence of increasing intensities of drought and warming on the resorption of different classes of plant metabolites. We studied the effect of warming and altered precipitation on the production and resorption of metabolites in Quercus rubra. The combination of warming and drought produced a higher abundance of compounds that can help to mitigate climatic stress by functioning as osmoregulators and antioxidants, including important intermediaries of the tricarboxylic acid (TCA) cycle, amino acids including proline and citrulline, and polyamines such as putrescine. Resorption efficiencies (REs) of extractable metabolites surprisingly had opposite responses to drought and warming; drought treatments generally increased RE of metabolites compared to ambient and wet treatments, while warming decreased RE. However, RE of total N differed markedly from that of extractable metabolites such as amino acids; for instance, droughted plants resorbed a smaller fraction of elemental N from their leaves than plants exposed to the ambient control. In contrast, plants in drought treatment resorbed amino acids more efficiently (>90%) than those in ambient (65-77%) or wet (42-58%) treatments. Across the climate treatments, the RE of elemental N correlated negatively with tissue tannin concentration, indicating that polyphenols produced in leaves under climatic stress could interfere with N resorption. Thus, senesced leaves from drier conditions might have a lower nutritive value to soil heterotrophs during the initial stages of litter decomposition despite a higher elemental N content of these tissues. Our results suggest that N resorption may be controlled not only by plant demand, but also by climatic influences on the production and resorption of plant metabolites. As climate-carbon models incorporate increasingly sophisticated nutrient cycles, these results highlight the need to adequately understand plant physiological responses to climatic variables.


Assuntos
Mudança Climática , Secas , Dispersão Vegetal , Quercus/fisiologia , Ecossistema , Massachusetts , Estresse Fisiológico
20.
New Phytol ; 203(1): 110-24, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24720813

RESUMO

Soil carbon (C) sequestration, as an ecosystem property, may be strongly influenced by invasive plants capable of depositing disproportionately high quantities of chemically distinct litter that disrupt ecosystem processes. However, a mechanistic understanding of the processes that regulate soil C storage in invaded ecosystems remains surprisingly elusive. Here, we studied the impact of the invasion of two noxious nonnative species, Polygonum cuspidatum, which produces recalcitrant litter, and Pueraria lobata, which produces labile litter, on the quantity, molecular composition, and stability of C in the soils they invade. Compared with an adjacent noninvaded old-field, P. cuspidatum-invaded soils exhibited a 26% increase in C, partially through selective preservation of plant polymers. Despite receiving a 22% higher litter input, P. lobata-invaded Pinus stands exhibited a 28% decrease in soil C and a twofold decrease in plant biomarkers, indicating microbial priming of native soil C. The stability of C exhibited an opposite trend: the proportion of C that was resistant to oxidation was 21% lower in P. cuspidatum-invaded soils and 50% higher in P. lobata-invaded soils. Our results highlight the capacity of invasive plants to feed back to climate change by destabilizing native soil C stocks and indicate that environments that promote the biochemical decomposition of plant litter would enhance the long-term storage of soil C. Further, our study highlights the concurrent influence of dominant plant species on both selective preservation and humification of soil organic matter.


Assuntos
Carbono/análise , Ecossistema , Fallopia japonica/crescimento & desenvolvimento , Pueraria/crescimento & desenvolvimento , Microbiologia do Solo , Solo/química , Biomassa , Ciclo do Carbono , Mudança Climática , Espécies Introduzidas , Massachusetts , South Carolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA