RESUMO
Thyroid-stimulating hormone (TSH) is an important regulator of the hypothalamic-pituitary-thyroid (HPT) axis in Xenopus laevis. To evaluate the role of this hormone on developing tadpoles, immunologically-based Western blots and sandwich ELISAs were developed for measuring intracellular (within pituitaries), secreted (ex vivo pituitary culture), and circulating (serum) amounts. Despite the small size of the tadpoles, these methods were able to easily measure intracellular and secreted TSH, and circulating TSH was measurable in situations where high levels were induced. The method was validated after obtaining a highly purified and enriched TSH sample using anti-TSH-ß antibodies conjugated to magnetic beads. Subsequent mass-spectrometric analysis of the bands from SDS-PAGE and Western procedures identified the presence of amino acid sequences corresponding to TSH subunits. The purified sample was also used to prepare standard curves for quantitative analysis. The Western and ELISA methods had limits of detection in the low nanogram range. While the majority of the developmental work for these methods was done with X. laevis, the methods also detected TSH in Xenopus tropicalis. To our knowledge this is the first report of a specific detection method for TSH in these species, and the first to measure circulating TSH in amphibians. Examples of the utility of the methods include measuring a gradual increase in pituitary TSH at key stages of development, peaking at stages 58-62; the suppression of TSH secretion from cultured pituitaries in the presence of thyroid hormone (T4); and increases in serum TSH following thyroidectomy.
Assuntos
Tireotropina/metabolismo , Xenopus laevis/metabolismo , Xenopus/metabolismo , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Hipófise/metabolismo , Tireotropina/sangue , Xenopus/sangue , Xenopus laevis/sangueRESUMO
We used ex vivo and in vivo experiments with Xenopus laevis tadpoles to examine the hypothesis that the set-point for negative feedback on pituitary thyroid-stimulating hormone (TSH) synthesis and secretion by thyroid hormones (THs) increases as metamorphosis progresses to allow for the previously documented concomitant increase in serum TH concentrations and pituitary TSH mRNA expression during this transformative process. First, pituitaries from climactic tadpoles were cultured for up to 96 h to characterize the ability of pituitary explants to synthesize and secrete TSHß in the absence of hypothalamic and circulating hormones. Next, pituitary explants from tadpoles NF stages 54-66 were exposed to physiologically-relevant concentrations of THs to determine whether stage-specific differences exist in pituitary sensitivity to negative feedback by THs. Finally, in vivo exposures of tadpoles to THs were conducted to confirm the results of the ex vivo experiments. When pituitaries from climactic tadpoles were removed from the influence of endogenous hormones, TSHß mRNA expression increased late or not at all whereas the rate of TSHß secreted into media increased dramatically, suggesting that TSH secretion, but not TSH mRNA expression, is under the negative regulation of an endogenous signal during the climactic stages of metamorphosis. Pituitaries from pre- and prometamorphic tadpoles were more sensitive to TH-induced inhibition of TSHß mRNA expression and secretion than pituitaries from climactic tadpoles. The observed decrease in sensitivity of pituitary TSHß mRNA expression to negative feedback by THs from premetamorphosis to metamorphic climax was confirmed by in vivo experiments in which tadpoles were reared in water containing THs. Based on the results of this study, a model is proposed to explain the seemingly paradoxical, concurrent rise in serum TH concentrations and pituitary TSH mRNA expression during metamorphosis in larval anurans.