Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Science ; 353(6297): 389-94, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27463675

RESUMO

Nature provides many examples of self- and co-assembling protein-based molecular machines, including icosahedral protein cages that serve as scaffolds, enzymes, and compartments for essential biochemical reactions and icosahedral virus capsids, which encapsidate and protect viral genomes and mediate entry into host cells. Inspired by these natural materials, we report the computational design and experimental characterization of co-assembling, two-component, 120-subunit icosahedral protein nanostructures with molecular weights (1.8 to 2.8 megadaltons) and dimensions (24 to 40 nanometers in diameter) comparable to those of small viral capsids. Electron microscopy, small-angle x-ray scattering, and x-ray crystallography show that 10 designs spanning three distinct icosahedral architectures form materials closely matching the design models. In vitro assembly of icosahedral complexes from independently purified components occurs rapidly, at rates comparable to those of viral capsids, and enables controlled packaging of molecular cargo through charge complementarity. The ability to design megadalton-scale materials with atomic-level accuracy and controllable assembly opens the door to a new generation of genetically programmable protein-based molecular machines.


Assuntos
Capsídeo/química , Nanoestruturas/química , Engenharia de Proteínas/métodos , Subunidades Proteicas/química , Proteínas Virais/química , Capsídeo/ultraestrutura , Cristalografia por Raios X , Genoma Viral , Microscopia Eletrônica , Modelos Moleculares , Peso Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Nanoestruturas/ultraestrutura , Subunidades Proteicas/genética , Espalhamento a Baixo Ângulo , Proteínas Virais/genética , Proteínas Virais/ultraestrutura , Difração de Raios X
2.
J Exp Med ; 208(1): 91-102, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21199956

RESUMO

Self-reactive T cells that escape elimination in the thymus can cause autoimmune pathology, and it is therefore important to understand the structural mechanisms of self-antigen recognition. We report the crystal structure of a T cell receptor (TCR) from a patient with relapsing-remitting multiple sclerosis that engages its self-peptide-major histocompatibility complex (pMHC) ligand in an unusual manner. The TCR is bound in a highly tilted orientation that prevents interaction of the TCR-α chain with the MHC class II ß chain helix. In this structure, only a single germline-encoded TCR loop engages the MHC protein, whereas in most other TCR-pMHC structures all four germline-encoded TCR loops bind to the MHC helices. The tilted binding mode also prevents peptide contacts by the short complementarity-determining region (CDR) 3ß loop, and interactions that contribute to peptide side chain specificity are focused on the CDR3α loop. This structure is the first example in which only a single germline-encoded TCR loop contacts the MHC helices. Furthermore, the reduced interaction surface with the peptide may facilitate TCR cross-reactivity. The structural alterations in the trimolecular complex are distinct from previously characterized self-reactive TCRs, indicating that there are multiple unusual ways for self-reactive TCRs to bind their pMHC ligand.


Assuntos
Antígenos de Histocompatibilidade/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Antígenos de Histocompatibilidade/química , Humanos , Camundongos , Modelos Moleculares , Peptídeos/química , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/química , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA