Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(28): 17250-17262, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35796601

RESUMO

The brightness of an emitter can be enhanced by metal-enhanced fluorescence, wherein the excitonic dipole couples with the electromagnetic field of the surface plasmon. Herein, we experimentally map the landscape of photoluminescence enhancement (EFexp) of emitters in a plasmonic field as a function of the emitter-emitter separation, s, and the emitter-plasmon distance, t. We use Au nanoparticles overcoated with inert spacers as plasmonic systems and CdSe/ZnS quantum dots (QDs) as an emitter bearing opposite surface charges. The t and s are varied by changing the spacer thickness and number density of QDs on the plasmonic surface, respectively. The electrostatic binding of emitters on the plasmonic surface and their number density are established by following the variation of zeta-potential. EFexp is high, when t is short and s is large; nevertheless, it decreases when the emitter-emitter interaction dominates due to plasmon assisted nonradiative processes. In the absence of a plasmonic field, the enhancement observed is attributed to environmental effects and is independent of s, confirming the role of the electric field. Indeed, the distance dependence of EFexp closely follows the decay of the plasmonic field upon dilution of the emitter concentration on nanoparticles' surface (s = 18 nm). The QD-plasmon system is visualized in the framework of the Thomson problem, and classical electrodynamics calculations give the trends in t and s dependence of the photoluminescence. Being the first report on the simultaneous dependence of t and s on plasmon-enhanced photoluminescence, the results presented herein will open newer opportunities in the design of hybrid systems with a high brightness.

2.
ACS Nano ; 15(2): 2831-2838, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33417451

RESUMO

Despite the excellent optoelectronic properties of halide perovskites, the ionic and electronic defects adversely affect the stability and durability of perovskites and their devices. These defects, intrinsic or produced by environmental factors such as oxygen, moisture, or light, not only cause chemical reactions that disintegrate the structure and properties of perovskites but also induce undesired photoluminescence blinking to perovskite quantum dots and nanocrystals. Blinking is also caused by the nonradiative Auger processes in the photocharged quantum dots or nanocrystals. Herein, we find real-time suppression of halide vacancy-assisted nonradiative exciton recombination and photoluminescence blinking in MAPbBr3 and MAPbI3 perovskite quantum dots by filling the vacancies using halide precursors (MABr and MAI). Also, halide vacancy filling increases the photoluminescence quantum efficiencies and lifetimes of the quantum dots. We estimate the rates of halide vacancy-assisted nonradiative recombination at 1 × 108 s-1 for MAPbBr3 and 1.9 × 109 s-1 for MAPbI3 quantum dots. The real-time blinking suppression using the halide precursors and statistical analysis of the ON/OFF blinking time reveal that the halide vacancies contribute to the type-A blinking through charging and discharging. Conversely, the blinking of the quantum dots after halide vacancy filling is dominated by the type-B mechanism.

3.
ACS Nano ; 12(9): 9060-9069, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30103604

RESUMO

Semiconductor quantum dots with stable photoluminescence are necessary for next generation optoelectronic and photovoltaic devices. Photoluminescence intensity fluctuations of cadmium and lead chalcogenide quantum dots have been extensively investigated since the first observation of blinking in CdSe nanocrystals in 1996. In a quantum dot, blinking originates from stochastic photocharging, nonradiative Auger recombination, and delayed neutralization. So far, blinking is suppressed by defect passivation, electron transfer, and shell preparation, but without any deep insight into free energy change of electron transfer. We report real-time detection of significant blinking suppression for CdSe/ZnS quantum dots exposed to N, N-dimethylaniline, which is accompanied by a considerable increase in the time-averaged photoluminescence intensity of quantum dots. Although the Gibbs (free) energy change (Δ Get = +2.24 eV), which is estimated electrochemically and from density functional theory calculations, is unfavorable for electron transfer from N, N-dimethylaniline to a quantum dot in the minimally excited (band-edge) state, electron transfer is obvious when a quantum dot is highly excited. Nonetheless, Δ Get crosses from the positive to negative scale as the solvent dielectric constant exceeds 5, favoring electron transfer from N, N-dimethylaniline to a quantum dot excited to the band-edge state. Based on single-molecule photoluminescence and ensemble electron transfer studies, we assign blinking suppression to the transfer of an electron from N, N-dimethylaniline to the hot hole state of a quantum dot. In addition to blinking suppression by electron transfer, complete removal of blinking is limited by short-living OFF states induced by the negative trion.

4.
ACS Omega ; 2(8): 5150-5158, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457790

RESUMO

Heterojunction nanorods having dissimilar semiconductors possess charge transfer (CT) properties and are proposed as active elements in optoelectronic systems. Herein, we describe the synthetic methodologies for controlling the charge carrier recombination dynamics in CdSe-CdTe heterojunction nanorods through the precise growth of CdTe segment from one of the tips of CdSe nanorods. The location of heterojunction was established through a point-by-point collection of the energy-dispersive X-ray spectra using scanning transmission electron microscopy. The possibilities of the growth of CdTe from both the tips of CdSe nanorods and the overcoating of CdTe over CdSe segment were also ruled out. The CT emission in the heterojunction nanorods originates through an interfacial excitonic recombination and was further tuned to the near-infrared region by varying the two parameters: the aspect ratio of CdSe and the length of CdTe segment. These aspects are evidenced from the emission lifetime and the femtosecond transient absorption studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA