Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phytopathology ; 112(7): 1431-1443, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34384240

RESUMO

Policymakers and donors often need to identify the locations where technologies are most likely to have important effects, to increase the benefits from agricultural development or extension efforts. Higher-quality information may help to target the high-benefit locations, but often actions are needed with limited information. The value of information (VOI) in this context is formalized by evaluating the results of decision making guided by a set of specific information compared with the results of acting without considering that information. We present a framework for management performance mapping that includes evaluating the VOI for decision making about geographic priorities in regional intervention strategies, in case studies of Andean and Kenyan potato seed systems. We illustrate the use of recursive partitioning, XGBoost, and Bayesian network models to characterize the relationships among seed health and yield responses and environmental and management predictors used in studies of seed degeneration. These analyses address the expected performance of an intervention based on geographic predictor variables. In the Andean example, positive selection of seed from asymptomatic plants was more effective at high altitudes in Ecuador. In the Kenyan example, there was the potential to target locations with higher technology adoption rates and with higher potato cropland connectivity, i.e., a likely more important role in regional epidemics. Targeting training to high management performance areas would often provide more benefits than would random selection of target areas. We illustrate how assessing the VOI can contribute to targeted development programs and support a culture of continuous improvement for interventions.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Sementes , Solanum tuberosum , Teorema de Bayes , Equador , Quênia , Doenças das Plantas/prevenção & controle
2.
Phytopathology ; 110(4): 708-722, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31821114

RESUMO

Effective altruism is an ethical framework for identifying the greatest potential benefits from investments. Here, we apply effective altruism concepts to maximize research benefits through identification of priority stakeholders, pathosystems, and research questions and technologies. Priority stakeholders for research benefits may include smallholder farmers who have not yet attained the minimal standards set out by the United Nations Sustainable Development Goals; these farmers would often have the most to gain from better crop disease management, if their management problems are tractable. In wildlands, prioritization has been based on the risk of extirpating keystone species, protecting ecosystem services, and preserving wild resources of importance to vulnerable people. Pathosystems may be prioritized based on yield and quality loss, and also factors such as whether other researchers would be unlikely to replace the research efforts if efforts were withdrawn, such as in the case of orphan crops and orphan pathosystems. Research products that help build sustainable and resilient systems can be particularly beneficial. The "value of information" from research can be evaluated in epidemic networks and landscapes, to identify priority locations for both benefits to individuals and to constrain regional epidemics. As decision-making becomes more consolidated and more networked in digital agricultural systems, the range of ethical considerations expands. Low-likelihood but high-damage scenarios such as generalist doomsday pathogens may be research priorities because of the extreme potential cost. Regional microbiomes constitute a commons, and avoiding the "tragedy of the microbiome commons" may depend on shifting research products from "common pool goods" to "public goods" or other categories. We provide suggestions for how individual researchers and funders may make altruism-driven research more effective.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Altruísmo , Ecossistema , Agricultura , Produtos Agrícolas , Humanos , Doenças das Plantas
3.
Phytopathology ; 107(10): 1209-1218, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28742457

RESUMO

Seed systems have an important role in the distribution of high-quality seed and improved varieties. The structure of seed networks also helps to determine the epidemiological risk for seedborne disease. We present a new approach for evaluating the epidemiological role of nodes in seed networks, and apply it to a regional potato farmer consortium (Consorcio de Productores de Papa [CONPAPA]) in Ecuador. We surveyed farmers to estimate the structure of networks of farmer seed tuber and ware potato transactions, and farmer information sources about pest and disease management. Then, we simulated pathogen spread through seed transaction networks to identify priority nodes for disease detection. The likelihood of pathogen establishment was weighted based on the quality or quantity of information sources about disease management. CONPAPA staff and facilities, a market, and certain farms are priorities for disease management interventions such as training, monitoring, and variety dissemination. Advice from agrochemical store staff was common but assessed as significantly less reliable. Farmer access to information (reported number and quality of sources) was similar for both genders. However, women had a smaller amount of the market share for seed tubers and ware potato. Understanding seed system networks provides input for scenario analyses to evaluate potential system improvements. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


Assuntos
Epidemias , Espécies Introduzidas , Doenças das Plantas/microbiologia , Sementes/microbiologia , Solanum tuberosum/microbiologia , Simulação por Computador , Produtos Agrícolas , Equador , Feminino , Humanos , Masculino , Modelos Teóricos , Doenças das Plantas/estatística & dados numéricos , Tubérculos/microbiologia
4.
Phytopathology ; 107(10): 1123-1135, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28545348

RESUMO

Pathogen buildup in vegetative planting material, termed seed degeneration, is a major problem in many low-income countries. When smallholder farmers use seed produced on-farm or acquired outside certified programs, it is often infected. We introduce a risk assessment framework for seed degeneration, evaluating the relative performance of individual and combined components of an integrated seed health strategy. The frequency distribution of management performance outcomes was evaluated for models incorporating biological and environmental heterogeneity, with the following results. (1) On-farm seed selection can perform as well as certified seed, if the rate of success in selecting healthy plants for seed production is high; (2) when choosing among within-season management strategies, external inoculum can determine the relative usefulness of 'incidence-altering management' (affecting the proportion of diseased plants/seeds) and 'rate-altering management' (affecting the rate of disease transmission in the field); (3) under severe disease scenarios, where it is difficult to implement management components at high levels of effectiveness, combining management components can be synergistic and keep seed degeneration below a threshold; (4) combining management components can also close the yield gap between average and worst-case scenarios. We also illustrate the potential for expert elicitation to provide parameter estimates when empirical data are unavailable. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Assuntos
Produtos Agrícolas/microbiologia , Doenças das Plantas/prevenção & controle , Sementes/microbiologia , Agricultura , Simulação por Computador , Produtos Agrícolas/fisiologia , Fazendas , Manihot/microbiologia , Manihot/fisiologia , Modelos Teóricos , Musa/microbiologia , Musa/fisiologia , Doenças das Plantas/microbiologia , Medição de Risco , Sementes/fisiologia , Solanum tuberosum/microbiologia , Solanum tuberosum/fisiologia , Tempo (Meteorologia)
5.
Plant Pathol ; 68(8): 1472-1480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32406415

RESUMO

Virus-related degeneration constrains production of quality sweet potato seed, especially under open field conditions. Once in the open, virus-indexed seed is prone to virus infection leading to decline in performance. Insect-proof net tunnels have been proven to reduce virus infection under researcher management. However, their effectiveness under farmer-multiplier management is not known. This study investigated the ability of net tunnels to reduce degeneration in sweet potato under farmer-multiplier management. Infection and degeneration were assessed for two cultivars, Kabode and Polista, grown in net tunnels and open fields at two sites with varying virus pressures. There was zero virus incidence at both sites during the first five generations. Sweet potato feathery mottle virus and sweet potato chlorotic stunt virus were present in the last three generations, occurring singly or in combination to form sweet potato virus disease. Virus infection increased successively, with higher incidences recorded at the high virus pressure site. Seed degeneration modelling illustrated that for both varieties, degeneration was reduced by the maintenance of vines under net tunnel conditions. The time series of likely degeneration based on a generic model of yield loss suggested that, under the conditions experienced during the experimental period, infection and losses within the net tunnels would be limited. By comparison, in the open field most of the yield could be lost after a small number of generations without the input of seed with lower disease incidence. Adopting the technology at the farmer-multiplier level can increase availability of clean seed, particularly in high virus pressure areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA