Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Res ; 30(1): 85-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857444

RESUMO

Transfer RNA (tRNA) genes are among the most highly transcribed genes in the genome owing to their central role in protein synthesis. However, there is evidence for a broad range of gene expression across tRNA loci. This complexity, combined with difficulty in measuring transcript abundance and high sequence identity across transcripts, has severely limited our collective understanding of tRNA gene expression regulation and evolution. We establish sequence-based correlates to tRNA gene expression and develop a tRNA gene classification method that does not require, but benefits from, comparative genomic information and achieves accuracy comparable to molecular assays. We observe that guanine + cytosine (G + C) content and CpG density surrounding tRNA loci is exceptionally well correlated with tRNA gene activity, supporting a prominent regulatory role of the local genomic context in combination with internal sequence features. We use our tRNA gene activity predictions in conjunction with a comprehensive tRNA gene ortholog set spanning 29 placental mammals to estimate the evolutionary rate of functional changes among orthologs. Our method adds a new dimension to large-scale tRNA functional prediction and will help prioritize characterization of functional tRNA variants. Its simplicity and robustness should enable development of similar approaches for other clades, as well as exploration of functional diversification of members of large gene families.


Assuntos
Genoma , Genômica , RNA de Transferência , Animais , Biologia Computacional/métodos , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Genômica/métodos , Mamíferos , Camundongos , Filogenia , RNA de Transferência/genética
2.
Proc Natl Acad Sci U S A ; 115(36): 8996-9001, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127029

RESUMO

Transfer RNAs (tRNAs) are a central component for the biological synthesis of proteins, and they are among the most highly conserved and frequently transcribed genes in all living things. Despite their clear significance for fundamental cellular processes, the forces governing tRNA evolution are poorly understood. We present evidence that transcription-associated mutagenesis and strong purifying selection are key determinants of patterns of sequence variation within and surrounding tRNA genes in humans and diverse model organisms. Remarkably, the mutation rate at broadly expressed cytosolic tRNA loci is likely between 7 and 10 times greater than the nuclear genome average. Furthermore, evolutionary analyses provide strong evidence that tRNA genes, but not their flanking sequences, experience strong purifying selection acting against this elevated mutation rate. We also find a strong correlation between tRNA expression levels and the mutation rates in their immediate flanking regions, suggesting a simple method for estimating individual tRNA gene activity. Collectively, this study illuminates the extreme competing forces in tRNA gene evolution and indicates that mutations at tRNA loci contribute disproportionately to mutational load and have unexplored fitness consequences in human populations.


Assuntos
Arabidopsis/genética , Genes de Helmintos , Genes de Plantas , Mutação , RNA de Helmintos/genética , RNA de Plantas/genética , RNA de Transferência/genética , Animais , Drosophila melanogaster , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA