Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 606(7913): 298-304, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614215

RESUMO

Confining particles to distances below their de Broglie wavelength discretizes their motional state. This fundamental effect is observed in many physical systems, ranging from electrons confined in atoms or quantum dots1,2 to ultracold atoms trapped in optical tweezers3,4. In solid-state photonics, a long-standing goal has been to achieve fully tunable quantum confinement of optically active electron-hole pairs, known as excitons. To confine excitons, existing approaches mainly rely on material modulation5, which suffers from poor control over the energy and position of trapping potentials. This has severely impeded the engineering of large-scale quantum photonic systems. Here we demonstrate electrically controlled quantum confinement of neutral excitons in 2D semiconductors. By combining gate-defined in-plane electric fields with inherent interactions between excitons and free charges in a lateral p-i-n junction, we achieve exciton confinement below 10 nm. Quantization of excitonic motion manifests in the measured optical response as a ladder of discrete voltage-dependent states below the continuum. Furthermore, we observe that our confining potentials lead to a strong modification of the relative wave function of excitons. Our technique provides an experimental route towards creating scalable arrays of identical single-photon sources and has wide-ranging implications for realizing strongly correlated photonic phases6,7 and on-chip optical quantum information processors8,9.

2.
Nano Lett ; 21(19): 8175-8181, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34591490

RESUMO

Atomically smooth hexagonal boron nitride (hBN) flakes have revolutionized two-dimensional (2D) optoelectronics. They provide the key substrate, encapsulant, and gate dielectric for 2D electronics while offering hyperbolic dispersion and quantum emission for photonics. The shape, thickness, and profile of these hBN flakes affect device functionality. However, researchers are restricted to simple, flat flakes, limiting next-generation devices. If arbitrary structures were possible, enhanced control over the flow of photons, electrons, and excitons could be exploited. Here, we demonstrate freeform hBN landscapes by combining thermal scanning-probe lithography and reactive-ion etching to produce previously unattainable flake structures with surprising fidelity. We fabricate photonic microelements (phase plates, grating couplers, and lenses) and show their straightforward integration, constructing a high-quality optical microcavity. We then decrease the length scale to introduce Fourier surfaces for electrons, creating sophisticated Moiré patterns for strain and band-structure engineering. These capabilities generate opportunities for 2D polaritonics, twistronics, quantum materials, and deep-ultraviolet devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA