Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 447, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159743

RESUMO

BACKGROUND: Under caged conditions, birds are affected more severely by environmental stressors such as dietary structure, activity space, human disturbances, and pathogens, which may be reflected in the gene expression in peripheral blood or other tissues. Elucidating the molecular mechanism of these stress responses will help improve animal welfare. RESULTS: In the present study, the blood transcriptomes of six male and five female caged magpies (Pica pica) were sequenced, and a total of ~ 100 Gb in clean reads were generated using the Illumina HiSeq 2000 sequencer. A total of 420,291 unigenes were identified after assembly, of which 179,316 were annotated in five databases, 7471 were assigned to 269 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 566 were assigned to the Clusters of Orthologous Groups (COG) functional classification "defense mechanisms". Analysis of differentially expressed genes (DEGs) showed that 2657 unigenes were differentially expressed between males and females (q < 0.1), and these DEGs were assigned to 45 KEGG pathways involving stress resistance, immunity, energy metabolism, reproduction, lifespan regulation, and diseases. Further analysis revealed that females might be more sensitive to stress through upregulation of c-Jun N-terminal kinases (JNKs) and 5'AMP-activated protein kinase (AMPK), and were also possibly more sensitive to dynamic changes in energy. Females expressed higher major histocompatibility complex (MHC) class II levels than males, enhancing resistance to pathogens, and the DEGs related to reproduction included MAPK, CaMK, CPEB, and Cdc25. The genes related to stress, energy, and immunity were also likely related to the regulation of longevity. The upregulated JNKs in females might prolong lifespan and relieve antioxidant stress. Females may also activate the AMPK pathway and implement dietary restrictions to prolong lifespan, whereas males may upregulate SIRT1 and CRAB to increase lifespan. CONCLUSIONS: Female magpies might be more sensitive to stress and dynamic changes in energy thus enhanced resistance to pathogens, and the genes related to stress, energy, and immunity were also possibly related to the regulation of longevity. Further confirmations with techniques such as RT-qPCR and western blot are necessary to validate the above arguments.


Assuntos
Proteínas Aviárias/genética , Aves/fisiologia , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Abrigo para Animais/estatística & dados numéricos , Estresse Fisiológico , Animais , Aves/genética , Feminino , Regulação da Expressão Gênica , Masculino
2.
Ecol Evol ; 8(3): 1736-1745, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29435248

RESUMO

Food resources are often not sufficient to satisfy the nutritional and energetic requirements during winter conditions at high latitudes. Dietary analysis is a prerequisite to fully understanding the feeding ecology of a species and the nature of trophic interactions. Previous dietary studies of Asian Great Bustard (Otis tarda dybowskii) relied on behavioral observations, resulting in categorization of diet limited to broad taxonomic groupings. Here, we applied a high-throughput sequencing meta-barcoding approach to quantify the diet of resident and migratory Asian Great Bustard in three wintering sites during early winter and late winter. We detected 57 unique plant taxa in the bustard diet, among which 15 species were confirmed by a local plant database we generated. Both agricultural and natural foods were detected, indicating a relatively broad dietary niche. Spatiotemporal dietary changes were discovered, revealing diet differences among wintering sites and a general shift toward lower plant diversity later in winter. For the nonmigratory population, we detected a significantly more diverse array of plant species in their diet. We hypothesize that dietary variation between resident and migratory populations could be involved in the recent transition to partial migration in this species, although climate change can not be excluded. Collectively, these results support protecting unharvested grain fields and naturally unplowed lands to help conserve and promote population growth of Asian Great Bustard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA