Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(27): 11159-11175, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39015419

RESUMO

Increasing interest in the sustainable synthesis of ammonia, nitrates, and urea has led to an increase in studies of catalytic conversion between nitrogen-containing compounds using heterogeneous catalysts. Density functional theory (DFT) is commonly employed to obtain molecular-scale insight into these reactions, but there have been relatively few assessments of the exchange-correlation functionals that are best suited for heterogeneous catalysis of nitrogen compounds. Here, we assess a range of functionals ranging from the generalized gradient approximation (GGA) to the random phase approximation (RPA) for the formation energies of gas-phase nitrogen species, the lattice constants of representative solids from several common classes of catalysts (metals, oxides, and metal-organic frameworks (MOFs)), and the adsorption energies of a range of nitrogen-containing intermediates on these materials. The results reveal that the choice of exchange-correlation functional and van der Waals correction can have a surprisingly large effect and that increasing the level of theory does not always improve the accuracy for nitrogen-containing compounds. This suggests that the selection of functionals should be carefully evaluated on the basis of the specific reaction and material being studied.

2.
ACS Catal ; 14(13): 9752-9775, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38988657

RESUMO

Anthropogenic activities have disrupted the natural nitrogen cycle, increasing the level of nitrogen contaminants in water. Nitrogen contaminants are harmful to humans and the environment. This motivates research on advanced and decarbonized treatment technologies that are capable of removing or valorizing nitrogen waste found in water. In this context, the electrocatalytic conversion of inorganic- and organic-based nitrogen compounds has emerged as an important approach that is capable of upconverting waste nitrogen into valuable compounds. This approach differs from state-of-the-art wastewater treatment, which primarily converts inorganic nitrogen to dinitrogen, and organic nitrogen is sent to landfills. Here, we review recent efforts related to electrocatalytic conversion of inorganic- and organic-based nitrogen waste. Specifically, we detail the role that electrocatalyst design (alloys, defects, morphology, and faceting) plays in the promotion of high-activity and high-selectivity electrocatalysts. We also discuss the impact of wastewater constituents. Finally, we discuss the critical product analyses required to ensure that the reported performance is accurate.

3.
ChemSusChem ; 16(22): e202300948, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37890028

RESUMO

Photocatalytic nitrogen fixation has the potential to provide a greener route for producing nitrogen-based fertilizers under ambient conditions. Computational screening is a promising route to discover new materials for the nitrogen fixation process, but requires identifying "descriptors" that can be efficiently computed. In this work, we argue that selectivity toward the adsorption of molecular nitrogen and oxygen can act as a key descriptor. A catalyst that can selectively adsorb nitrogen and resist poisoning of oxygen and other molecules present in air has the potential to facilitate the nitrogen fixation process under ambient conditions. We provide a framework for active site screening based on multifidelity density functional theory (DFT) calculations for a range of metal oxides, oxyborides, and oxyphosphides. The screening methodology consists of initial low-fidelity fixed geometry calculations and a second screening in which more expensive geometry optimizations were performed. The approach identifies promising active sites on several TiO2 polymorph surfaces and a VBO4 surface, and the full nitrogen reduction pathway is studied with the BEEF-vdW and HSE06 functionals on two active sites. The findings suggest that metastable TiO2 polymorphs may play a role in photocatalytic nitrogen fixation, and that VBO4 may be an interesting material for further studies.

4.
JACS Au ; 3(12): 3283-3289, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38155641

RESUMO

Titanium dioxide is the most studied photocatalytic material and has been reported to be active for a wide range of reactions, including the oxidation of hydrocarbons and the reduction of nitrogen. However, the molecular-scale interactions between the titania photocatalyst and dinitrogen are still debated, particularly in the presence of hydrocarbons. Here, we used several spectroscopic and computational techniques to identify interactions among nitrogen, methanol, and titania under illumination. Electron paramagnetic resonance spectroscopy (EPR) allowed us to observe the formation of carbon radicals upon exposure to ultraviolet radiation. These carbon radicals are observed to transform into diazo- and nitrogen-centered radicals (e.g., CHxN2• and CHxNHy•) during photoreaction in nitrogen environment. In situ infrared (IR) spectroscopy under the same conditions revealed C-N stretching on titania. Furthermore, density functional theory (DFT) calculations revealed that nitrogen adsorption and the thermodynamic barrier to photocatalytic nitrogen fixation are significantly more favorable in the presence of hydroxymethyl or surface carbon. These results provide compelling evidence that carbon radicals formed from the photooxidation of hydrocarbons interact with dinitrogen and suggest that the role of carbon-based "hole scavengers" and the inertness of nitrogen atmospheres should be reevaluated in the field of photocatalysis.

5.
J Phys Chem Lett ; 10(15): 4401-4408, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31310543

RESUMO

High-throughput screening of catalysts can be performed using density functional theory calculations to predict catalytic properties, often correlated with adsorbate binding energies. However, more complete investigations would require an order of 2 more calculations compared to the current approach, making the computational cost a bottleneck. Recently developed machine-learning methods have been demonstrated to predict these properties from hand-crafted features but have struggled to scale to large composition spaces or complex active sites. Here, we present an application of a deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information. The model effectively learns the most important surface features to predict binding energies. Our method predicts CO and H binding energies after training with 12 000 data for each adsorbate with a mean absolute error of 0.15 eV for a diverse chemical space. Our method is also capable of creating saliency maps that determine atomic contributions to binding energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA