Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 188: 106656, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640859

RESUMO

Mesenchymal-epithelial transition factor (C-Met) has been acknowledged as a significant therapeutic target for treating lung adenocarcinoma (LUAD). However, the potential application of chimeric antigen receptors (CAR)-modified natural killer (NK) cells targeting c-Met in LUAD is rarely explored. In this study, bioinformatic databases were searched and a tissue microarray (TMA) was enrolled to investigate expression status and prognostic role of c-Met in LUAD. Then, four types of c-Met-CAR structures were designed and prepared. The engineering CAR-NK cells containing c-Met-CARs were transfected, verified and characterized. The tumor-inhibitory role of c-Met-CAR-NK cells was finally evaluated in vitro and in vivo. The results demonstrated that c-Met expression elevated and confirmed that high c-Met expression was significantly associated with unfavorable prognosis in LUAD. Then, C-Met-CAR-NK cells were successfully constructed and DAP10 designed in CAR structure was a favorable stimulator for NK cell activation. CCN4 containing DAP10 co-stimulator exhibited the strongest cytotoxicity compared with other CAR-NK cells. Furthermore, CCN4 cells also exerted the prominent tumor-inhibitory effect on xenograft tumor growth. Collectively, this study suggests that DAP10 is a potent stimulator in CAR structure for NK cell activation, and CCN4-based immunotherapy may represent a promising strategy for the treatment of c-Met-positive LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Humanos , Linhagem Celular Tumoral , Células Matadoras Naturais , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo
2.
Pharmacol Res ; 181: 106269, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605813

RESUMO

BACKGROUND: Siglec-15 (S15) is a type-I transmembrane protein and is considered a new candidate of immune checkpoint inhibitor for cancer immunotherapy. METHODS: In the present study, we first constructed and characterized a chimeric S15-specific monoclonal antibody (S15-4E6A). Then, the antitumor effectiveness and modulatory role of S15-4E6A in macrophages (mφs) were explored in vitro and in vivo. Finally, the underlying mechanism by which S15mAb inhibits LUAD was preliminarily explored. RESULTS: The results demonstrated the successful construction of S15-4E6A, and S15-4E6A exerted an efficacious tumor-inhibitory effect on LUAD cells and xenografts. S15-4E6A could promote M1-mφ polarization while inhibiting M2-mφ polarization, both in vitro and in vivo. CONCLUSIONS: S15-based immunotherapy that functions by modulating mφ polarization may be a promising strategy for the treatment of S15-positive LUAD.


Assuntos
Macrófagos , Neoplasias , Anticorpos/farmacologia , Humanos , Imunoterapia , Macrófagos/metabolismo , Neoplasias/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/farmacologia , Microambiente Tumoral
4.
Burns Trauma ; 12: tkae012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860010

RESUMO

The hypoxic environment is among the most important factors that complicates the healing of chronic wounds, such as venous leg ulcers, pressure injuries and diabetic foot ulcers, which seriously affects the quality of life of patients. Various oxygen supply treatments are used in clinical practice to improve the hypoxic environment at the wound site. However, problems still occur, such as insufficient oxygen supply, short oxygen infusion time and potential biosafety risks. In recent years, artificial photosynthetic systems have become a research hotspot in the fields of materials and energy. Photosynthesis is expected to improve the oxygen level at wound sites and promote wound healing because the method provides a continuous oxygen supply and has good biosafety. In this paper, oxygen treatment methods for wounds are reviewed, and the oxygen supply principle and construction of artificial photosynthesis systems are described. Finally, research progress on the photosynthetic oxygen production system to promote wound healing is summarized.

5.
Bioengineered ; 12(1): 2676-2687, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34115550

RESUMO

Myocardial cell injury caused by myocardial ischemia and reperfusion is one of the main causes of the occurrence and development of heart disease. Recent study has shown that inducing mitophagy of cardiomyocytes is a crucial method to alleviate ischemia-reperfusion injury. While, Polo-like kinase 1 (PLK1) can induce the mitophagy of breast cancer cells. Moreover, PLK1 was able to promote the expression of p-AMPK and FUNDC1, which are the protective factors for myocardium. Therefore, the mouse model of ischemia/reperfusion was established and the effect of PLK1 on ischemia reperfusion induced myocardial damage was investigated. The PLK1 was overexpressed in H9c2 cells and rat model of ischemia/reperfusion. Ischemia reperfusion inhibited the expression of PLK1. While overexpression of PLK1 relieved the myocardial infarction and myocardium apoptosis through inducing mitophagy in rats model of ischemia reperfusion. In vitro, the H9c2 cells overexpressing the PLK1 were treated with the hypoxia and reoxygenation and the apoptosis, survival rate and expression of mitophagy-related proteins of H9c2 cells were detected using the flow cytometry, CCK-8 assay and western blotting. The results reveled that overexpression of PLK1 alleviated the hypoxia and reoxygenation induced apoptosis of H9c2 cells and promoted the expression of mitophagy-related proteins. In addition, enhanced PLK1 expression promoted the expression of p-AMPK and FUNDC1 in H9c2 cells. However, the inhibition of FUNDC1 abolished the positive effect of PLK1 on H9c2 cells mentioned above. In conclusion, PLK1 alleviated the ischemia reperfusion induced myocardial damage by inducing the mitophagy in a p-AMPK/FUNDC1 signaling dependent pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/genética , Traumatismo por Reperfusão Miocárdica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Ratos , Ratos Sprague-Dawley , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA