Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 291(45): 23681-23692, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27590342

RESUMO

Agonist-induced activation of Rho GTPase signaling leads to endothelial cell (EC) permeability and may culminate in pulmonary edema, a devastating complication of acute lung injury. Cingulin is an adaptor protein first discovered in epithelium and is involved in the organization of the tight junctions. This study investigated the role of cingulin in control of agonist-induced lung EC permeability via interaction with RhoA-specific activator GEF-H1. The siRNA-induced cingulin knockdown augmented thrombin-induced EC permeability monitored by measurements of transendothelial electrical resistance and endothelial cell permeability for macromolecules. Increased thrombin-induced permeability in ECs with depleted cingulin was associated with increased activation of GEF-H1 and RhoA detected in pulldown activation assays. Increased GEF-H1 association with cingulin was essential for down-regulation of thrombin-induced RhoA barrier disruptive signaling. Using cingulin-truncated mutants, we determined that GEF-H1 interaction with the rod + tail domain of cingulin was required for inactivation of GEF-H1 and endothelial cell barrier preservation. The results demonstrate the role for association of GEF-H1 with cingulin as the mechanism of RhoA pathway inactivation and rescue of EC barrier after agonist challenge.


Assuntos
Permeabilidade Capilar , Células Endoteliais/metabolismo , Pulmão/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Trombina/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Linhagem Celular , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Pulmão/fisiopatologia , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Mutação , Mapas de Interação de Proteínas , Interferência de RNA , RNA Interferente Pequeno/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo
2.
J Biol Chem ; 290(7): 4097-109, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25492863

RESUMO

Hepatocyte growth factor (HGF) attenuates agonist-induced endothelial cell (EC) permeability and increases pulmonary endothelial barrier function via Rac-dependent enhancement of the peripheral actin cytoskeleton. However, the precise mechanisms of HGF effects on the peripheral cytoskeleton are not well understood. This study evaluated a role for Rac/Cdc42-specific guanine nucleotide exchange factor Asef and the multifunctional Rac effector, IQGAP1, in the mechanism of HGF-induced EC barrier enhancement. HGF induced Asef and IQGAP1 co-localization at the cell cortical area and stimulated formation of an Asef-IQGAP1 functional protein complex. siRNA-induced knockdown of Asef or IQGAP1 attenuated HGF-induced EC barrier enhancement. Asef knockdown attenuated HGF-induced Rac activation and Rac association with IQGAP1, and it abolished both IQGAP1 accumulation at the cell cortical layer and IQGAP1 interaction with actin cytoskeletal regulators cortactin and Arp3. Asef activation state was essential for Asef interaction with IQGAP1 and protein complex accumulation at the cell periphery. In addition to the previously reported role of the IQGAP1 RasGAP-related domain in the Rac-dependent IQGAP1 activation and interaction with its targets, we show that the IQGAP1 C-terminal domain is essential for HGF-induced IQGAP1/Asef interaction and Asef-Rac-dependent activation leading to IQGAP1 interaction with Arp3 and cortactin as a positive feedback mechanism of IQGAP1 activation. These results demonstrate a novel feedback mechanism of HGF-induced endothelial barrier enhancement via Asef/IQGAP1 interactions, which regulate the level of HGF-induced Rac activation and promote cortical cytoskeletal remodeling via IQGAP1-Arp3/cortactin interactions.


Assuntos
Citoesqueleto de Actina/metabolismo , Permeabilidade da Membrana Celular , Endotélio Vascular/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Artéria Pulmonar/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Western Blotting , Células Cultivadas , Endotélio Vascular/citologia , Imunofluorescência , Humanos , Imunoprecipitação , Artéria Pulmonar/citologia , RNA Interferente Pequeno/genética , Fatores de Troca de Nucleotídeo Guanina Rho/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Proteínas Ativadoras de ras GTPase/genética
3.
Am J Physiol Lung Cell Mol Physiol ; 311(4): L800-L809, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27566003

RESUMO

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC) attenuates agonist-induced endothelial cell (EC) permeability and increases pulmonary endothelial barrier function via enhancement of both the peripheral actin cytoskeleton and cell junctions mediated by Rac1 and Cdc42 GTPases. This study evaluated the role for the multifunctional Rac1/Cdc42 effector and regulator, IQGAP1, as a molecular transducer of the OxPAPC-mediated EC barrier enhancing signal. IQGAP1 knockdown in endothelial cells by gene-specific siRNA abolished OxPAPC-induced enlargement of VE-cadherin-positive adherens junctions, suppressed peripheral accumulation of actin polymerization regulators, namely cortactin, N-WASP and Arp3, and attenuated remodeling of the peripheral actin cytoskeleton. Inhibition of OxPAPC-induced barrier enhancement by IQGAP1 knockdown was due to suppressed Rac1 and Cdc42 activation. Expression of an IQGAP1 truncated mutant showed that the GTPase regulatory domain (GRD) of IQGAP1 was essential for the OxPAPC-induced membrane localization of cortactin, adherens junction proteins VE-cadherin and p120-catenin as well as for EC permeability response. IQGAP1knockdown attenuated the protective effect of OxPAPC against thrombin-induced cell contraction, cell junction disruption and EC permeability. These results demonstrate for the first time the role of IQGAP1 as a critical transducer of OxPAPC-induced Rac1/Cdc42 signaling to the actin cytoskeleton and adherens junctions which promotes cortical cytoskeletal remodeling and EC barrier protective effects of oxidized phospholipids.

4.
J Biol Chem ; 289(8): 5168-83, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24352660

RESUMO

Microtubule (MT) dynamics is involved in a variety of cell functions, including control of the endothelial cell (EC) barrier. Release of Rho-specific nucleotide exchange factor GEF-H1 from microtubules activates the Rho pathway of EC permeability. In turn, pathologic vascular leak can be prevented by treatment with atrial natriuretic peptide (ANP). This study investigated a novel mechanism of vascular barrier protection by ANP via modulation of GEF-H1 function. In pulmonary ECs, ANP suppressed thrombin-induced disassembly of peripheral MT and attenuated Rho signaling and cell retraction. ANP effects were mediated by the Rac1 GTPase effector PAK1. Activation of Rac1-PAK1 promoted PAK1 interaction with the Rho activator GEF-H1, inducing phosphorylation of total and MT-bound GEF-H1 and leading to attenuation of Rho-dependent actin remodeling. In vivo, ANP attenuated lung injury caused by excessive mechanical ventilation and TRAP peptide (TRAP/HTV), which was further exacerbated in ANP(-/-) mice. The protective effects of ANP against TRAP/HTV-induced lung injury were linked to the increased pool of stabilized MT and inactivation of Rho signaling via ANP-induced, PAK1-dependent inhibitory phosphorylation of GEF-H1. This study demonstrates a novel protective mechanism of ANP against pathologic hyperpermeability and suggests a novel pharmacological intervention for the prevention of increased vascular leak via PAK1-dependent modulation of GEF-H1 activity.


Assuntos
Fator Natriurético Atrial/metabolismo , Permeabilidade Capilar , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Actinas/metabolismo , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Animais , Fator Natriurético Atrial/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Genes Dominantes , Células HEK293 , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Modelos Biológicos , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Pneumonia/enzimologia , Pneumonia/patologia , Ligação Proteica/efeitos dos fármacos , Trombina/farmacologia , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
FASEB J ; 28(7): 3249-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24706358

RESUMO

Suboptimal ventilator support or regional ventilation heterogeneity in inflamed lungs causes excessive tissue distension, which triggers stretch-induced pathological signaling and may lead to vascular leak and lung dysfunction. Focal adhesions (FAs) are cell-substrate adhesive complexes participating in cellular mechanotransduction and regulation of the Rho GTPase pathway. Stretch-induced Rho regulation remains poorly understood. We used human lung endothelial cells (ECs) exposed to pathological cyclic stretch (CS) at 18% distension to test the hypothesis that FA protein paxillin participates in CS-induced Rho activation by recruiting the Rho-specific guanine nucleotide exchange factor GEF-H1. CS induced phosphorylation of paxillin and activated p42/44-MAP kinase, Rho GTPase, and paxillin/GEF-H1/p42/44-MAPK association. CS caused nearly 2-fold increase in EC permeability, which was attenuated by paxillin knockdown. Expression of the paxillin-Y31/118F phosphorylation mutant decreased the CS-induced paxillin/GEF-H1 association (16.3 ± 4.1%), GEF-H1 activation (28.9 ± 9.2%), and EC permeability (28.7 ± 8.1%) but not CS-induced p42/44-MAPK activation. Inhibition of p42/44-MAPK suppressed CS-induced paxillin/GEF-H1 interactions (15.9 ± 7.9%), GEF-H1 activation (11.7 ± 4.3%), and disruption of EC monolayer. Expression of GEF-H1T678A lacking p42/44-MAPK phosphorylation site attenuated Rho activation (31.2±11.6%). We conclude that MAPK-dependent targeting of GEF-H1 to paxillin is involved in the regulation of CS-induced Rho signaling and EC permeability. This study proposes a novel concept of paxillin-GEF-H1-p42/44-MAPK module as a regulator of pathological mechanotransduction.-Gawlak, G., Tian, Y., O'Donnell, J. J., III, Tian, X., Birukova, A. A., Birukov, K. G. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex.


Assuntos
Permeabilidade Capilar/fisiologia , Células Endoteliais/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Paxilina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Células Cultivadas , Humanos , Pulmão/metabolismo , Pulmão/fisiologia , Fosforilação/fisiologia , Transdução de Sinais/fisiologia
6.
J Biol Chem ; 288(25): 18290-9, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23653363

RESUMO

p120-catenin is a multidomain intracellular protein, which mediates a number of cellular functions, including stabilization of cell-cell transmembrane cadherin complexes as well as regulation of actin dynamics associated with barrier function, lamellipodia formation, and cell migration via modulation of the activities of small GTPAses. One mechanism involves p120 catenin interaction with Rho GTPase activating protein (p190RhoGAP), leading to p190RhoGAP recruitment to cell periphery and local inhibition of Rho activity. In this study, we have identified a stretch of 23 amino acids within the C-terminal domain of p120 catenin as the minimal sequence responsible for the recruitment of p190RhoGAP (herein referred to as CRAD; catenin-RhoGAP association domain). Expression of the p120-catenin truncated mutant lacking the CRAD in endothelial cells attenuated effects of barrier protective oxidized phospholipid, OxPAPC. This effect was accompanied by inhibition of membrane translocation of p190RhoGAP, increased Rho signaling, as well as suppressed activation of Rac1 and its cytoskeletal effectors PAK1 (p21-activated kinase 1) and cortactin. Expression of p120 catenin-truncated mutant lacking CRAD also delayed the recovery process after thrombin-induced endothelial barrier disruption. Concomitantly, RhoA activation and downstream signaling were sustained for a longer period of time, whereas Rac signaling was inhibited. These data demonstrate a critical role for p120-catenin (amino acids 820-843) domain in the p120-catenin·p190RhoGAP signaling complex assembly, membrane targeting, and stimulation of p190RhoGAP activity toward inhibition of the Rho pathway and reciprocal up-regulation of Rac signaling critical for endothelial barrier regulation.


Assuntos
Cateninas/metabolismo , Permeabilidade da Membrana Celular , Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Sítios de Ligação/genética , Western Blotting , Caderinas/metabolismo , Cateninas/genética , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Imunofluorescência , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina , Células HEK293 , Humanos , Mutação , Fosfatidilcolinas/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Repressoras , Trombina/farmacologia , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , delta Catenina
7.
Am J Physiol Lung Cell Mol Physiol ; 304(11): L757-64, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23585227

RESUMO

Myofibroblast differentiation induced by transforming growth factor-ß (TGF-ß) is characterized by the expression of smooth muscle α-actin (SMA) and extracellular matrix proteins. We and others have previously shown that these changes are regulated by protein kinase A (PKA). Adrenomedullin (ADM) is a vasodilator peptide that activates cAMP/PKA signaling through the calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying proteins (RAMP). In this study, we found that recombinant ADM had little effect on cAMP/PKA in quiescent human pulmonary fibroblasts, whereas it induced a profound activation of cAMP/PKA signaling in differentiated (by TGF-ß) myofibroblasts. In contrast, the prostacyclin agonist iloprost was equally effective at activating PKA in both quiescent fibroblasts and differentiated myofibroblasts. TGF-ß stimulated a profound expression of CRLR with a time course that mirrored the increased PKA responses to ADM. The TGF-ß receptor kinase inhibitor SB431542 abolished expression of CRLR and attenuated the PKA responses of cells to ADM but not to iloprost. CRLR expression was also dramatically increased in lungs from bleomycin-treated mice. Functionally, ADM did not affect initial differentiation of quiescent fibroblasts in response to TGF-ß but significantly attenuated the expression of SMA, collagen-1, and fibronectin in pre-differentiated myofibroblasts, which was accompanied by decreased contractility of myofibroblasts. Finally, sensitization of ADM signaling by transgenic overexpression of RAMP2 in myofibroblasts resulted in enhanced survival and reduced pulmonary fibrosis in the bleomycin model of the disease. In conclusion, differentiated pulmonary myofibroblasts gain responsiveness to ADM via increased CRLR expression, suggesting the possibility of using ADM for targeting pathological myofibroblasts without affecting normal fibroblasts.


Assuntos
Adrenomedulina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Miofibroblastos/citologia , Fibrose Pulmonar/fisiopatologia , Actinas/metabolismo , Adrenomedulina/uso terapêutico , Animais , Bleomicina , Proteína Semelhante a Receptor de Calcitonina/biossíntese , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Iloprosta/farmacologia , Camundongos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/fisiologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Proteína 2 Modificadora da Atividade de Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia
8.
Eur Respir J ; 41(1): 165-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22790920

RESUMO

The protective effects of prostacyclin and its stable analogue iloprost are mediated by elevation of intracellular cyclic AMP (cAMP) leading to enhancement of the peripheral actin cytoskeleton and cell-cell adhesive structures. This study tested the hypothesis that iloprost may exhibit protective effects against lung injury and endothelial barrier dysfunction induced by bacterial wall lipopolysaccharide (LPS). Endothelial barrier dysfunction was assessed by measurements of transendothelial permeability, morphologically and by analysis of LPS-activated inflammatory signalling. In vivo, C57BL/6J mice were challenged with LPS with or without iloprost or 8-bromoadenosine-3',5'-cyclic monophosphate (Br-cAMP) treatment. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count and Evans blue extravasation. Iloprost and Br-cAMP attenuated the disruption of the endothelial monolayer, and suppressed the activation of p38 mitogen-activated protein kinase (MAPK), the nuclear factor (NF)-κB pathway, Rho signalling, intercellular adhesion molecular (ICAM)-1 expression and neutrophil migration after LPS challenge. In vivo, iloprost was effective against LPS-induced protein and neutrophil accumulation in bronchoalveolar lavage fluid, and reduced myeloperoxidase activation, ICAM-1 expression and Evans blue extravasation in the lungs. Inhibition of Rac activity abolished the barrier-protective and anti-inflammatory effects of iloprost and Br-cAMP. Iloprost-induced elevation of intracellular cAMP triggers Rac signalling, which attenuates LPS-induced NF-κB and p38 MAPK inflammatory pathways and the Rho-dependent mechanism of endothelial permeability.


Assuntos
Iloprosta/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Animais , Células Cultivadas , Endotélio/efeitos dos fármacos , Endotélio/fisiologia , Lipopolissacarídeos/administração & dosagem , Lesão Pulmonar/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/efeitos dos fármacos , Neuropeptídeos/fisiologia , Proteínas rac de Ligação ao GTP/efeitos dos fármacos , Proteínas rac de Ligação ao GTP/fisiologia , Proteínas rac1 de Ligação ao GTP
9.
Microvasc Res ; 87: 50-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23296034

RESUMO

Circulating barrier disruptive agonists bind specific cell membrane receptors and trigger signal transduction pathways leading to the activation of cell contractility and endothelial cell (EC) permeability. Although all cells in tissues including vascular EC are surrounded by compliant extracellular matrix, the impact of matrix stiffness on agonist-induced signaling, cytoskeletal remodeling and EC barrier regulation is not well understood. This study examined agonist-induced cytoskeletal and signaling changes associated with EC barrier disruption and recovery using pulmonary EC grown on compliant substrates of physiologically relevant (8.6 kPa) stiffness, very low (0.55 kPa) and very high (42 kPa) stiffness. Human pulmonary microvascular and macrovascular EC grown on 0.55 kPa substrate contained a few actin stress fibers, while stress fiber amount increased with increasing matrix stiffness. Thrombin-induced stress fiber formation was maximal in EC grown on 42 kPa substrate, diminished on 8.6 kPa substrate, and was minimal on 0.55 kPa substrate. These effects were linked to a stiffness-dependent increase in thrombin-induced phosphorylation of the Rho kinase target, myosin light chain phosphatase (MYPT1), and regulatory myosin light chains (MLC). Surprisingly, EC barrier recovery and activation of Rac GTPase-dependent barrier protective signaling reached maximal levels in EC grown on 8.6 kPa, but not on 0.55 kPa substrate. In conclusion, these data show a critical role of extracellular matrix stiffness in the regulation of the Rac/Rho signaling balance during onset and resolution of agonist-induced EC permeability. The optimal conditions for the Rho/Rac signaling switch, which provides an effective and reversible EC cytoskeletal and permeability response to agonist, are reached in cells grown on the matrix of physiologically relevant stiffness.


Assuntos
Resinas Acrílicas/química , Permeabilidade Capilar , Células Endoteliais/metabolismo , Pulmão/irrigação sanguínea , Permeabilidade Capilar/efeitos dos fármacos , Técnicas de Cultura de Células , Células Cultivadas , Elasticidade , Células Endoteliais/efeitos dos fármacos , Humanos , Hidrogéis , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Transdução de Sinais , Fibras de Estresse/metabolismo , Trombina/farmacologia , Fatores de Tempo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
10.
FASEB J ; 26(9): 3862-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22700873

RESUMO

Microtubule (MT) dynamics in vascular endothelium are modulated by vasoactive mediators and are critically involved in the control of endothelial cell (EC) permeability via Rho GTPase-dependent crosstalk with the actin cytoskeleton. However, the role of regulators in MT stability in these mechanisms remains unclear. This study investigated the involvement of the MT-associated protein stathmin in the mediation of agonist-induced permeability in EC cultures and vascular leak in vivo. Thrombin treatment of human pulmonary ECs induced rapid dephosphorylation and activation of stathmin. Inhibition of stathmin activity by small interfering RNA-based knockdown or cAMP-mediated phosphorylation abrogated thrombin-induced F-actin remodeling and Rho-dependent EC hyperpermeability, while expression of a phosphorylation-deficient stathmin mutant exacerbated thrombin-induced EC barrier disruption. Stathmin suppression preserved the MT network against thrombin-induced MT disassembly and release of Rho-specific guanine nucleotide exchange factor, GEF-H1. The protective effects of stathmin knockdown were observed in vivo in the mouse 2-hit model of ventilator-induced lung injury and were linked to MT stabilization and down-regulation of Rho signaling in the lung. These results demonstrate the mechanism of stathmin-dependent control of MT dynamics, Rho signaling, and permeability and suggest novel potential pharmacological interventions in the prevention of increased vascular leak via modulation of stathmin activity.


Assuntos
Permeabilidade da Membrana Celular , Pulmão/citologia , Microtúbulos/fisiologia , Estatmina/fisiologia , Animais , Endotélio/citologia , Endotélio/efeitos dos fármacos , Imunofluorescência , Técnicas de Silenciamento de Genes , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , RNA Interferente Pequeno/genética , Respiração Artificial/efeitos adversos , Estatmina/genética , Estatmina/metabolismo , Trombina/farmacologia
11.
Am J Respir Cell Mol Biol ; 46(3): 331-41, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21997484

RESUMO

The generation of phospholipid oxidation products in atherosclerosis, sepsis, and lung pathologies affects endothelial barrier function, which exerts significant consequences on disease outcomes in general. Our group previously showed that oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (OxPAPC) at low concentrations increases endothelial cell (EC) barrier function, but decreases it at higher concentrations. In this study, we determined the mechanisms responsible for the pulmonary endothelial cell barrier dysfunction induced by high OxPAPC concentrations. OxPAPC at a range of 5-20 µg/ml enhanced EC barriers, as indicated by increased transendothelial electrical resistance. In contrast, higher OxPAPC concentrations (50-100 µg/ml) rapidly increased EC permeability, which was accompanied by increased total cell protein tyrosine (Tyr) phosphorylation, phosphorylation at Tyr-418, the activation of Src kinase, and the phosphorylation of adherens junction (AJ) protein vascular endothelial cadherin (VE-cadherin) at Tyr-731 and Tyr-658, which was not observed in ECs stimulated with low OxPAPC doses. The early tyrosine phosphorylation of VE-cadherin was linked to the dissociation of VE-cadherin-p120-catenin/ß-catenin complexes and VE-cadherin internalization, whereas low OxPAPC doses promoted the formation of VE-cadherin-p120-catenin/ß-catenin complexes. High but not low doses of OxPAPC increased the production of reactive oxygen species (ROS) and protein oxidation. The inhibition of Src by PP2 and ROS production by N-acetyl cysteine inhibited the disassembly of VE-cadherin-p120-catenin complexes, and attenuated high OxPAPC-induced EC barrier disruption. These results show the differential effects of OxPAPC doses on VE-cadherin-p120-catenin complex assembly and EC barrier function. These data suggest that the rapid tyrosine phosphorylation of VE-cadherin and other potential targets mediated by Src and ROS-dependent mechanisms plays a key role in the dissociation of AJ complexes and EC barrier dysfunction induced by high OxPAPC doses.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fosfatidilcolinas/farmacologia , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Cateninas/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Impedância Elétrica , Células Endoteliais/metabolismo , Humanos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Tirosina , beta Catenina/metabolismo , Quinases da Família src/metabolismo , delta Catenina
12.
J Cell Physiol ; 227(10): 3405-16, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22213015

RESUMO

Small GTPase Rac is important regulator of endothelial cell (EC) barrier enhancement by prostacyclin characterized by increased peripheral actin cytoskeleton and increased interactions between VE-cadherin and other adherens junction (AJ) proteins. This study utilized complementary approaches including siRNA knockdown, culturing in Ca(2+) -free medium, and VE-cadherin blocking antibody to alter VE-cadherin extracellular interactions to investigate the role of VE-cadherin outside-in signaling in modulation of Rac activation and EC barrier regulation by prostacyclin analog iloprost. Spatial analysis of Rac activation in pulmonary EC by FRET revealed additional spike in iloprost-induced Rac activity at the sites of newly formed cell-cell junctions. In contrast, disruption of VE-cadherin extracellular trans-interactions suppressed iloprost-activated Rac signaling and attenuated EC barrier enhancement and cytoskeletal remodeling. These inhibitory effects were associated with decreased membrane accumulation and activation of Rac-specific guanine nucleotide exchange factors (GEFs) Tiam1 and Vav2. Conversely, plating of pulmonary EC on surfaces coated with extracellular VE-cadherin domain further promoted iloprost-induced Rac signaling. In the model of thrombin-induced EC barrier recovery, blocking of VE-cadherin trans-interactions attenuated activation of Rac pathway during recovery phase and delayed suppression of Rho signaling and restoration of EC barrier properties. These results suggest that VE-cadherin outside-in signaling controls locally Rac activity stimulated by barrier protective agonists. This control is essential for maximal EC barrier enhancement and accelerated barrier recovery.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Iloprosta/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Anticorpos/farmacologia , Caderinas/antagonistas & inibidores , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Endoteliais/citologia , Epoprostenol/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/metabolismo , Pulmão/citologia , Proteínas Proto-Oncogênicas c-vav/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
13.
Mol Cell Neurosci ; 44(1): 94-108, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20197093

RESUMO

Striatal dopamine depletion profoundly reduces the density of spines and corticostriatal glutamatergic synapses formed on D(2) dopamine receptor expressing striatopallidal medium spiny neurons, leaving D(1) receptor expressing striatonigral medium spiny neurons relatively intact. Because D(2) dopamine receptors diminish the excitability of striatopallidal MSNs, the pruning of synapses could be a form of homeostatic plasticity aimed at restoring activity into a preferred range. To characterize the homeostatic mechanisms controlling synapse density in striatal medium spiny neurons, striatum from transgenic mice expressing a D(2) receptor reporter construct was co-cultured with wild-type cerebral cortex. Sustained depolarization of these co-cultures induced a profound pruning of glutamatergic synapses and spines in striatopallidal medium spiny neurons. This pruning was dependent upon Ca(2+) entry through Cav1.2 L-type Ca(2+) channels, activation of the Ca(2+)-dependent protein phosphatase calcineurin and up-regulation of myocyte enhancer factor 2 (MEF2) transcriptional activity. Depolarization and MEF2 up-regulation increased the expression of two genes linked to synaptic remodeling-Nur77 and Arc. Taken together, these studies establish a translational framework within which striatal adaptations linked to the symptoms of Parkinson's disease can be explored.


Assuntos
Espinhas Dendríticas/metabolismo , Fatores de Regulação Miogênica/genética , Neostriado/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/genética , Potenciais de Ação/genética , Adaptação Fisiológica/genética , Animais , Calcineurina/genética , Calcineurina/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Técnicas de Cocultura , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Espinhas Dendríticas/ultraestrutura , Dopamina/metabolismo , Vias Eferentes/citologia , Vias Eferentes/metabolismo , Globo Pálido/citologia , Globo Pálido/metabolismo , Ácido Glutâmico/metabolismo , Fatores de Transcrição MEF2 , Camundongos , Camundongos Transgênicos , Neostriado/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Sinapses/ultraestrutura
14.
Nat Neurosci ; 10(11): 1458-66, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17906621

RESUMO

Dopamine-depleting lesions of the striatum that mimic Parkinson's disease induce a profound pruning of spines and glutamatergic synapses in striatopallidal medium spiny neurons, leaving striatonigral medium spiny neurons intact. The mechanisms that underlie this cell type-specific loss of connectivity are poorly understood. The Kir2 K(+) channel is an important determinant of dendritic excitability in these cells. Here we show that opening of these channels is potently reduced by signaling through M1 muscarinic receptors in striatopallidal neurons, but not in striatonigral neurons. This asymmetry could be attributed to differences in the subunit composition of Kir2 channels. Dopamine depletion alters the subunit composition further, rendering Kir2 channels in striatopallidal neurons even more susceptible to modulation. Reduced opening of Kir2 channels enhances dendritic excitability and synaptic integration. This cell type-specific enhancement of dendritic excitability is an essential trigger for synaptic pruning after dopamine depletion, as pruning was prevented by genetic deletion of M1 muscarinic receptors.


Assuntos
Corpo Estriado/citologia , Dendritos/fisiologia , Neurônios/ultraestrutura , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Receptor Muscarínico M1/fisiologia , Animais , Animais Recém-Nascidos , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Oxidopamina/farmacologia , Técnicas de Patch-Clamp/métodos , Receptor Muscarínico M1/deficiência , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Reserpina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
15.
Bioorg Med Chem ; 18(9): 3147-58, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20382537

RESUMO

L-type Ca(2+) channels in mammalian brain neurons have either a Ca(V)1.2 or Ca(V)1.3 pore-forming subunit. Recently, it was shown that Ca(V)1.3 Ca(2+) channels underlie autonomous pacemaking in adult dopaminergic neurons in the substantia nigra pars compacta, and this reliance renders them sensitive to toxins used to create animal models of Parkinson's disease. Antagonism of these channels with the dihydropyridine antihypertensive drug isradipine diminishes the reliance on Ca(2+) and the sensitivity of these neurons to toxins, pointing to a potential neuroprotective strategy. However, for neuroprotection without an antihypertensive side effect, selective Ca(V)1.3 channel antagonists are required. In an attempt to identify potent and selective antagonists of Ca(V)1.3 channels, 124 dihydropyridines (4-substituted-1,4-dihydropyridine-3,5-dicarboxylic diesters) were synthesized. The antagonism of heterologously expressed Ca(V)1.2 and Ca(V)1.3 channels was then tested using electrophysiological approaches and the FLIPR Calcium 4 assay. Despite the large diversity in substitution on the dihydropyridine scaffold, the most Ca(V)1.3 selectivity was only about twofold. These results support a highly similar dihydropyridine binding site at both Ca(V)1.2 and Ca(V)1.3 channels and suggests that other classes of compounds need to be identified for Ca(V)1.3 selectivity.


Assuntos
Bloqueadores dos Canais de Cálcio/síntese química , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio/efeitos dos fármacos , Ácidos Dicarboxílicos/síntese química , Di-Hidropiridinas/síntese química , Animais , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Di-Hidropiridinas/química , Di-Hidropiridinas/farmacologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Nifedipino/química , Nifedipino/farmacologia
16.
PLoS One ; 13(7): e0200691, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016341

RESUMO

BACKGROUND: As an effort to reduce hospital readmissions, early follow-up visits were recommended by the Society of Hospital Medicine. However, published literature on the effect of follow-up visits is limited with mixed conclusions. Our goal here is to fully explore the relationship between follow-up visits and the all-cause non-elective 30-day readmission rate (RR) after adjusting for confounders. METHODS AND RESULTS: To conduct this retrospective observational study, we extracted data for 55,378 adult inpatients from Advocate Health Care, a large, multi-hospital system serving a diverse population in a major metropolitan area. These patients were discharged to Home or Home with Home Health services between June 1, 2013 and April 30, 2015. Our findings from time-dependent Cox proportional hazard models showed that follow-up visits were significantly associated with a reduced RR (adjusted hazard ratio: 0.86; 95% CI: 0.82-0.91), but in a complicated way because the interaction between follow-up visits and a readmission risk score was significant with p-value < 0.001. Our analysis using logistic models on an adjusted data set confirmed the above findings with the following additional results. First, time matter. Follow-up visits within 2 days were associated with the greatest reduction in RR (adjusted odds ratio: 0.72; 95% CI: 0.63-0.83). Visits beyond 2 days were also associated with a reduction in RR, but the strength of the effect decreased as the time between discharge and follow-up visit increased. Second, the strength of such association varied for patients with different readmission risk scores. Patients with a risk score of 0.113, high but not extremely high risk, had the greatest reduction in RR from follow-up visits. Patients with an extremely high risk score (> 0.334) saw no RR reduction from follow-up visits. Third, a patient was much more likely to have a 2-day follow-up visit if that visit was scheduled before the patient was discharged from the hospital (30% versus < 5%). CONCLUSIONS: Follow-up visits are associated with a reduction in readmission risk. The timing of follow-up visits can be important: beyond two days, the earlier, the better. The effect of follow-up visits is more significant for patients with a high but not extremely high risk of readmission.


Assuntos
Modelos Biológicos , Readmissão do Paciente , Adulto , Feminino , Seguimentos , Humanos , Masculino , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Medição de Risco
17.
Cell Signal ; 29: 1-11, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27667566

RESUMO

Rapid changes in microtubule (MT) polymerization dynamics affect regional activity of small GTPases RhoA and Rac1, which play a key role in the regulation of actin cytoskeleton and endothelial cell (EC) permeability. This study tested the role of End Binding Protein-1 (EB1) in the mechanisms of increased and decreased EC permeability caused by thrombin and hepatocyte growth factor (HGF) and mediated by RhoA and Rac1 GTPases, respectively. Stimulation of human lung EC with thrombin inhibited peripheral MT growth, which was monitored by morphological and biochemical evaluation of peripheral MT and the levels of stabilized MT. In contrast, stimulation of EC with HGF promoted peripheral MT growth and protrusion of EB1-positive MT plus ends to the EC peripheral submembrane area. EB1 knockdown by small interfering RNA did not affect partial MT depolymerization, activation of Rho signaling, and permeability response to thrombin, but suppressed the HGF-induced endothelial barrier enhancement. EB1 knockdown suppressed HGF-induced activation of Rac1 and Rac1 cytoskeletal effectors cortactin and PAK1, impaired HGF-induced assembly of cortical cytoskeleton regulatory complex (WAVE-p21Arc-IQGAP1), and blocked HGF-induced enhancement of peripheral actin cytoskeleton and VE-cadherin-positive adherens junctions. Altogether, these data demonstrate a role for EB1 in coordination of MT-dependent barrier enhancement response to HGF, but show no involvement of EB1 in acute increase of EC permeability caused by the barrier disruptive agonist. The results suggest that increased peripheral EB1 distribution is a critical component of the Rac1-mediated pathway and peripheral cytoskeletal remodeling essential for agonist-induced EC barrier enhancement.


Assuntos
Permeabilidade da Membrana Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Técnicas de Silenciamento de Genes , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trombina/farmacologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
18.
Mol Biol Cell ; 26(4): 636-50, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25518936

RESUMO

Increased levels of hepatocyte growth factor (HGF) in injured lungs may reflect a compensatory response to diminish acute lung injury (ALI). HGF-induced activation of Rac1 GTPase stimulates endothelial barrier protective mechanisms. This study tested the involvement of Rac-specific guanine nucleotide exchange factor Asef in HGF-induced endothelial cell (EC) cytoskeletal dynamics and barrier protection in vitro and in a two-hit model of ALI. HGF induced membrane translocation of Asef and stimulated Asef Rac1-specific nucleotide exchange activity. Expression of constitutively activated Asef mutant mimicked HGF-induced peripheral actin cytoskeleton enhancement. In contrast, siRNA-induced Asef knockdown or expression of dominant-negative Asef attenuated HGF-induced Rac1 activation evaluated by Rac-GTP pull down and FRET assay with Rac1 biosensor. Molecular inhibition of Asef attenuated HGF-induced peripheral accumulation of cortactin, formation of lamellipodia-like structures, and enhancement of VE-cadherin adherens junctions and compromised HGF-protective effect against thrombin-induced RhoA GTPase activation, Rho-dependent cytoskeleton remodeling, and EC permeability. Intravenous HGF injection attenuated lung inflammation and vascular leak in the two-hit model of ALI induced by excessive mechanical ventilation and thrombin signaling peptide TRAP6. This effect was lost in Asef(-/-) mice. This study shows for the first time the role of Asef in HGF-mediated protection against endothelial hyperpermeability and lung injury.


Assuntos
Permeabilidade da Membrana Celular , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Pulmão/metabolismo , Animais , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Camundongos , Interferência de RNA , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
PLoS One ; 9(9): e105912, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25198505

RESUMO

Microtubules (MT) play a vital role in many cellular functions, but their role in peripheral actin cytoskeletal dynamics which is essential for control of endothelial barrier and monolayer integrity is less understood. We have previously described the enhancement of lung endothelial cell (EC) barrier by hepatocyte growth factor (HGF) which was associated with Rac1-mediated remodeling of actin cytoskeleton. This study investigated involvement of MT-dependent mechanisms in the HGF-induced enhancement of EC barrier. HGF-induced Rac1 activation was accompanied by phosphorylation of stathmin, a regulator of MT dynamics. HGF also stimulated MT peripheral growth monitored by time lapse imaging and tracking analysis of EB-1-decorated MT growing tips, and increased the pool of acetylated tubulin. These effects were abolished by EC pretreatment with HGF receptor inhibitor, downregulation of Rac1 pathway, or by expression of a stathmin-S63A phosphorylation deficient mutant. Expression of stathmin-S63A abolished the HGF protective effects against thrombin-induced activation of RhoA cascade, permeability increase, and EC barrier dysfunction. These results demonstrate a novel MT-dependent mechanism of HGF-induced EC barrier regulation via Rac1/PAK1/stathmin-dependent control of MT dynamics.


Assuntos
Endotélio Vascular/fisiologia , Fator de Crescimento de Hepatócito/fisiologia , Pulmão/fisiologia , Microtúbulos/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Pulmão/metabolismo , Fosforilação , Estatmina/metabolismo , Frações Subcelulares/metabolismo , Proteínas rac1 de Ligação ao GTP/fisiologia
20.
Mol Cell Biol ; 34(18): 3546-58, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25022754

RESUMO

Cross talk between the actin cytoskeleton and microtubules (MT) has been implicated in the amplification of agonist-induced Rho signaling, leading to increased vascular endothelial permeability. This study tested the involvement of actin-MT cross talk in the mechanisms of barrier enhancement induced by hepatocyte growth factor (HGF) and evaluated the role of the adaptor protein IQGAP1 in integrating the MT- and actin-dependent pathways of barrier enhancement. IQGAP1 knockdown by small interfering RNA attenuated the HGF-induced increase in endothelial barrier properties and abolished HGF-activated cortical actin dynamics. IQGAP1 reduction abolished HGF-induced peripheral accumulation of Rac cytoskeletal effector cortactin and cortical actin remodeling. In addition, HGF stimulated peripheral MT growth in an IQGAP1-dependent fashion. HGF also induced Rac1-dependent IQGAP1 association with the MT fraction and the formation of a protein complex containing end-binding protein 1 (EB1), IQGAP1, and cortactin. Decreasing endogenous IQGAP1 abolished HGF-induced EB1-cortactin colocalization at the cell periphery. In turn, expression of IQGAP1ΔC (IQGAP1 lacking the C-terminal domain) attenuated the cortactin association with EB1 and suppressed HGF-induced endothelial cell peripheral actin cytoskeleton enhancement. These results demonstrate for the first time the MT-actin cross talk mechanism of HGF-induced endothelial barrier enhancement and suggest that IQGAP1 functions as a hub linking HGF-induced signaling to MT and actin remodeling via EB1-IQGAP1-cortactin interactions.


Assuntos
Citoesqueleto de Actina/metabolismo , Cortactina/metabolismo , Células Endoteliais/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Cortactina/genética , Técnicas de Silenciamento de Genes , Humanos , Proteínas Associadas aos Microtúbulos/genética , RNA Interferente Pequeno , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA