Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Microbiol Immunol ; 61(3-4): 130-137, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28332721

RESUMO

Given that Ebola virus causes severe hemorrhagic fever in humans with mortality rates as high as 90%, rapid and accurate detection of this virus is essential both for controlling infection and preventing further transmission. Here, a one-step qRT-PCR assay for rapid and quantitative detection of an Ebola Zaire strain using GP, VP24 or VP40 genes as a target is introduced. Routine assay conditions for hydrolysis probe detection were established from the manufacturer's protocol used in the assays. The analytical specificity and sensitivity of each assay was evaluated using in vitro synthesized viral RNA transcripts. The assays were highly specific for the RNA transcripts, no cross-reactivity being observed among them. The limits of detection of the assays ranged from 102 to 103 copies per reaction. The assays were also evaluated using viral RNAs extracted from cell culture-propagated viruses (Ebola Zaire, Sudan and Reston strains), confirming that they are gene- and strain-specific. The RT-PCR assays detected viral RNAs in blood samples from virus-infected animal, suggesting that they can be also a useful method for identifying Ebola virus in clinical samples.


Assuntos
Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/virologia , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Sangue/virologia , Ebolavirus/genética , Humanos , Sensibilidade e Especificidade , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Proteínas Virais/genética
2.
J Virol ; 89(13): 6773-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903348

RESUMO

UNLABELLED: This study addresses the role of Ebola virus (EBOV) specific infectivity in virulence. Filoviruses are highly lethal, enveloped, single-stranded negative-sense RNA viruses that can cause hemorrhagic fever. No approved vaccines or therapies exist for filovirus infections, and infectious virus must be handled in maximum containment. Efficacy testing of countermeasures, in addition to investigations of pathogenicity and immune response, often requires a well-characterized animal model. For EBOV, an obstacle in performing accurate disease modeling is a poor understanding of what constitutes an infectious dose in animal models. One well-recognized consequence of viral passage in cell culture is a change in specific infectivity, often measured as a particle-to-PFU ratio. Here, we report that serial passages of EBOV in cell culture resulted in a decrease in particle-to-PFU ratio. Notably, this correlated with decreased potency in a lethal cynomolgus macaque (Macaca fascicularis) model of infection; animals were infected with the same viral dose as determined by plaque assay, but animals that received more virus particles exhibited increased disease. This suggests that some particles are unable to form a plaque in a cell culture assay but are able to result in lethal disease in vivo. These results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures. IMPORTANCE: Ebola virus (EBOV) can cause severe hemorrhagic disease with a high case-fatality rate, and there are no approved vaccines or therapies. Specific infectivity can be considered the total number of viral particles per PFU, and its impact on disease is poorly understood. In stocks of most mammalian viruses, there are particles that are unable to complete an infectious cycle or unable to cause cell pathology in cultured cells. We asked if these particles cause disease in nonhuman primates by infecting monkeys with equal infectious doses of genetically identical stocks possessing either high or low specific infectivities. Interestingly, some particles that did not yield plaques in cell culture assays were able to result in lethal disease in vivo. Furthermore, the number of PFU needed to induce lethal disease in animals was very low. Our results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Animais , Modelos Animais de Doenças , Ebolavirus/crescimento & desenvolvimento , Ebolavirus/patogenicidade , Haplorrinos , Doença pelo Vírus Ebola/mortalidade , Macaca fascicularis , Inoculações Seriadas , Análise de Sobrevida , Carga Viral , Ensaio de Placa Viral , Virulência
3.
J Infect Dis ; 212 Suppl 2: S398-403, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25877553

RESUMO

In addition to its surface glycoprotein (GP), Ebola virus directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. We recently reported that sGP actively diverts host antibody responses against the epitopes that it shares with GP and thereby allows itself to absorb anti-GP antibodies, a phenomenon we termed "antigenic subversion." To investigate the effect of antigenic subversion by sGP on protection against virus infection, we compared immune responses induced by different prime-boost immunization regimens with GP and sGP DNA vaccines in mice and their efficacy against lethal Ebola virus challenge. Similar levels of anti-GP antibodies were induced by 2 immunizations with sGP and GP DNA vaccines. However, 2 immunizations with GP but not sGP DNA vaccine fully protected mice from lethal challenge. Boosting with sGP or GP DNA vaccine in mice that had been primed by GP or sGP DNA vaccine augmented the levels of anti-GP antibody responses and further improved protective efficacy against Ebola virus infection. These results show that both the quality and the levels of anti-GP antibody responses affect the efficacy of protection against Ebola virus infection.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Isoformas de Proteínas/imunologia , Vacinas de DNA/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Feminino , Células HEK293 , Doença pelo Vírus Ebola/virologia , Humanos , Imunização Secundária/métodos , Camundongos , Camundongos Endogâmicos BALB C , Vacinação/métodos
4.
Vaccines (Basel) ; 10(8)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36016203

RESUMO

Marburg virus (MARV) is a filovirus that can infect humans and nonhuman primates (NHPs), causing severe disease and death. Of the filoviruses, Ebola virus (EBOV) has been the primary target for vaccine and therapeutic development. However, MARV has an average case fatality rate of approximately 50%, the infectious dose is low, and there are currently no approved vaccines or therapies targeted at infection with MARV. The purpose of this study was to characterize disease course in cynomolgus macaques intramuscularly exposed to MARV Angola variant. There were several biomarkers that reliably correlated with MARV-induced disease, including: viral load; elevated total clinical scores; temperature changes; elevated ALT, ALP, BA, TBIL, CRP and decreased ALB values; decreased lymphocytes and platelets; and prolonged PTT. A scheduled euthanasia component also provided the opportunity to study the earliest stages of the disease. This study provides evidence for the application of this model to evaluate potential vaccines and therapies against MARV and will be valuable in improving existing models.

5.
Vaccines (Basel) ; 10(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36298588

RESUMO

The primary objective of this study was to characterize the disease course in cynomolgus macaques exposed to Sudan virus (SUDV), to determine if infection in this species is an appropriate model for the evaluation of filovirus countermeasures under the FDA Animal Rule. Sudan virus causes Sudan virus disease (SVD), with an average case fatality rate of approximately 50%, and while research is ongoing, presently there are no approved SUDV vaccines or therapies. Well characterized animal models are crucial for further developing and evaluating countermeasures for SUDV. Twenty (20) cynomolgus macaques were exposed intramuscularly to either SUDV or sterile phosphate-buffered saline; 10 SUDV-exposed animals were euthanized on schedule to characterize pathology at defined durations post-exposure and 8 SUDV-exposed animals were not part of the scheduled euthanasia cohort. Survival was assessed, along with clinical observations, body weights, body temperatures, hematology, clinical chemistry, coagulation, viral load (serum and tissues), macroscopic observations, and histopathology. There were statistically significant differences between SUDV-exposed animals and mock-exposed animals for 26 parameters, including telemetry body temperature, clinical chemistry parameters, hematology parameters, activated partial thromboplastin time, serum viremia, and biomarkers that characterize the disease course of SUDV in cynomolgus macaques.

6.
Microorganisms ; 9(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652589

RESUMO

Ebola virus (EBOV) is a negative-sense RNA virus that can infect humans and nonhuman primates with severe health consequences. Development of countermeasures requires a thorough understanding of the interaction between host and pathogen, and the course of disease. The goal of this study was to further characterize EBOV disease in a uniformly lethal rhesus macaque model, in order to support development of a well-characterized model following rigorous quality standards. Rhesus macaques were intramuscularly exposed to EBOV and one group was euthanized at predetermined time points to characterize progression of disease. A second group was not scheduled for euthanasia in order to analyze survival, changes in physiology, clinical pathology, terminal pathology, and telemetry kinetics. On day 3, sporadic viremia was observed and pathological evidence was noted in lymph nodes. By day 5, viremia was detected in all EBOV exposed animals and pathological evidence was noted in the liver, spleen, and gastrointestinal tissues. These data support the notion that EBOV infection in rhesus macaques is a rapid systemic disease similar to infection in humans, under a compressed time scale. Biomarkers that correlated with disease progression at the earliest stages of infection were observed thereby identifying potential "trigger-to-treat" for use in therapeutic studies.

7.
Front Microbiol ; 11: 304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174901

RESUMO

Ebolavirus (EBOV) infection in humans causes severe hemorrhagic fevers with high mortality rates that range from 30 to 80% as shown in different outbreaks. Thus the development of safe and efficacious EBOV vaccines remains an important goal for biomedical research. We have shown in early studies that immunization with insect cell-produced EBOV virus-like particles (VLPs) is able to induce protect vaccinated mice against lethal EBOV challenge. In the present study, we investigated immune responses induced by Ebola VLPs via two different routes, intramuscular and intradermal immunizations, in guinea pigs. Analyses of antibody responses revealed that similar levels of total IgG antibodies against the EBOV glycoprotein (GP) were induced by the two different immunization methods. However, further characterization showed that the EBOV GP-specific antibodies induced by intramuscular immunization were mainly of the IgG2 subtype whereas both IgG1 and IgG2 antibodies against EBOV GP were induced by intradermal immunization. In contrast, antibody responses against the EBOV matrix protein VP40 induced by intramuscular or intradermal immunizations exhibited similar IgG1 and IgG2 profiles. More interestingly, we found that the sites that the IgG1 antibodies induced by intradermal immunizations bind to in GP are different from those that bind to the IgG2 antibodies induced by intramuscular immunization. Further analyses revealed that sera from all vaccinated guinea pigs exhibited neutralizing activity against Ebola GP-mediated HIV pseudovirion infection at high levels. Moreover, all EBOV VLP-vaccinated guinea pigs survived the challenge by a high dose (1000 pfu) of guinea pig-adapted EBOV, while all control guinea pigs immunized with irrelevant VLPs succumbed to the challenge. The induction of both IgG1 and IgG2 antibody responses that recognized broader sites in GP by intradermal immunization of EBOV VLPs indicates that this approach may represent a more advantageous route of vaccination against virus infection.

8.
Virology ; 420(2): 117-24, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21959017

RESUMO

Ebolavirus and Marburgvirus are members of the filovirus family and induce a fatal hemorrhagic disease in humans and nonhuman primates with 90% case fatality. To develop a small nonhuman primate model for filovirus disease, common marmosets (Callithrix jacchus) were intramuscularly inoculated with wild type Marburgvirus Musoke or Ebolavirus Zaire. The infection resulted in a systemic fatal disease with clinical and morphological features closely resembling human infection. Animals experienced weight loss, fever, high virus titers in tissue, thrombocytopenia, neutrophilia, high liver transaminases and phosphatases and disseminated intravascular coagulation. Evidence of a severe disseminated viral infection characterized principally by multifocal to coalescing hepatic necrosis was seen in EBOV animals. MARV-infected animals displayed only moderate fibrin deposition in the spleen. Lymphoid necrosis and lymphocytic depletion observed in spleen. These findings provide support for the use of the common marmoset as a small nonhuman primate model for filovirus induced hemorrhagic fever.


Assuntos
Callithrix/virologia , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/patologia , Doença do Vírus de Marburg/patologia , Marburgvirus/patogenicidade , Animais , Modelos Animais de Doenças , Doença pelo Vírus Ebola/mortalidade , Rim/patologia , Rim/virologia , Fígado/patologia , Fígado/virologia , Pulmão/patologia , Pulmão/virologia , Doença do Vírus de Marburg/mortalidade , Doenças dos Macacos/virologia , Baço/patologia , Baço/virologia , Carga Viral
9.
Virology ; 383(1): 12-21, 2009 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-18986663

RESUMO

Ebola virus-like particles (VLPs) were produced in insect cells using a recombinant baculovirus expression system and their efficacy for protection against Ebola virus infection was investigated. Two immunizations with 50 microg Ebola VLPs (high dose) induced a high level of antibodies against Ebola GP that exhibited strong neutralizing activity against GP-mediated virus infection and conferred complete protection of vaccinated mice against lethal challenge by a high dose of mouse-adapted Ebola virus. In contrast, two immunizations with 10 microg Ebola VLPs (low dose) induced 5-fold lower levels of antibodies against GP and these mice were not protected against lethal Ebola virus challenge, similar to control mice that were immunized with 50 microg SIV Gag VLPs. However, the antibody responses against GP were boosted significantly after a third immunization with 10 microg Ebola VLPs to similar levels as those induced by two immunizations with 50 microg Ebola VLPs, and vaccinated mice were also effectively protected against lethal Ebola virus challenge. Furthermore, serum viremia levels in protected mice were either below the level of detection or significantly lower compared to the viremia levels in control mice. These results show that effective protection can be achieved by immunization with Ebola VLPs produced in insect cells, which give high production yields, and lend further support to their development as an effective vaccine strategy against Ebola virus.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Baculoviridae/genética , Linhagem Celular , Doença pelo Vírus Ebola/imunologia , Imunização Secundária , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Spodoptera , Análise de Sobrevida , Vacinas Virossomais/imunologia , Viremia/imunologia , Viremia/prevenção & controle
10.
Vaccine ; 26(41): 5246-54, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18692539

RESUMO

A single injection of ML29 reassortant vaccine for Lassa fever induces low, transient viremia, and low or moderate levels of ML29 replication in tissues of common marmosets depending on the dose of the vaccination. The vaccination elicits specific immune responses and completely protects marmosets against fatal disease by induction of sterilizing cell-mediated immunity. DNA array analysis of human peripheral blood mononuclear cells from healthy donors exposed to ML29 revealed that gene expression patterns in ML29-exposed PBMC and control, media-exposed PBMC, clustered together confirming safety profile of the ML29 in non-human primates. The ML29 reassortant is a promising vaccine candidate for Lassa fever.


Assuntos
Callithrix/imunologia , Imunidade Celular/imunologia , Febre Lassa/prevenção & controle , Vírus Lassa/imunologia , Vírus Reordenados/imunologia , Animais , Complexo CD3/imunologia , Chlorocebus aethiops , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Febre Lassa/imunologia , Febre Lassa/patologia , Vírus Lassa/genética , Vírus Lassa/isolamento & purificação , Leucócitos Mononucleares/imunologia , Receptores de Lipopolissacarídeos/imunologia , Masculino , Vírus Reordenados/genética , Segurança , Análise de Sobrevida , Linfócitos T/imunologia , Células Vero , Viremia/imunologia
11.
J Virol ; 81(12): 6482-90, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17409137

RESUMO

Lassa virus causes thousands of deaths annually in western Africa and is considered a potential biological weapon. In an attempt to develop a small nonhuman primate model of Lassa fever, common marmosets were subcutaneously inoculated with Lassa virus strain Josiah. This inoculation resulted in a systemic disease with clinical and morphological features mirroring those in fatal human Lassa infection: fever, weight loss, high viremia and viral RNA load in tissues, elevated liver enzymes, and severe morbidity between days 15 and 20. The most prominent histopathology findings included multifocal hepatic necrosis with mild inflammation and hepatocyte proliferation, lymphoid depletion, and interstitial nephritis. Cellular aggregates in regions of hepatocellular necrosis were largely composed of HAM56-positive macrophages, devoid of CD3-positive and CD20-positive cells, and characterized by marked reductions in the intensity of HLA-DP, DQ, DR staining. A marked reduction in the major histocompatibility complex class II expression was also observed in the lymph nodes. Immunophenotypic alterations in spleen included reductions in overall numbers of CD20-positive and CD3-positive cells and the disruption of lymphoid follicular architecture. These findings identify the common marmoset as an appropriate model of human Lassa fever and present the first experimental evidence that replication of Lassa virus in tissues is associated with alterations that would be expected to impair adaptive immunity.


Assuntos
Callithrix/virologia , Febre Lassa/virologia , Vírus Lassa/metabolismo , Fígado/patologia , Fígado/virologia , Animais , Antígenos CD20/biossíntese , Complexo CD3/biossíntese , Proliferação de Células , Modelos Animais de Doenças , Imuno-Histoquímica , Imunofenotipagem , Inflamação , Febre Lassa/patologia , Fígado/imunologia , Linfócitos/metabolismo , Fatores de Tempo
12.
Vaccine ; 25(20): 4093-102, 2007 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-17360080

RESUMO

Lassa virus (LASV) is responsible for the deaths of thousands of people in West Africa annually. Genetic diversity among LASV strains is the highest among the Arenaviridae and represents a great challenge for vaccine development. Guinea pigs vaccinated with a ML29 reassortant vaccine experienced sterilizing immunity and complete protection when challenged on day 30 either with homologous virus or with the distantly related Nigerian isolate. Simultaneous vaccination-challenge or challenge on day 2 after vaccination also protected 60-100% of the animals against both strains, but without sterilizing immunity. These results indicate that simultaneous replication of ML29 and LASV attenuates the virulence of LASV infection.


Assuntos
Febre Lassa/prevenção & controle , Vírus Lassa/imunologia , Vírus Reordenados/imunologia , Vacinas Virais/imunologia , Animais , Formação de Anticorpos/imunologia , Feminino , Cobaias , Imunidade Celular/imunologia , Febre Lassa/imunologia , Febre Lassa/patologia , Febre Lassa/virologia , Vírus Lassa/isolamento & purificação , Nigéria , Vírus Reordenados/genética , Vacinas Virais/farmacologia
13.
Virology ; 345(2): 299-304, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-16412488

RESUMO

The Yellow Fever Vaccine 17D (YFV17D) has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) resulting in construction of YFV17D/LASV-GPC recombinant virus. The virus was replication-competent and processed the LASV-GPC in cell cultures. The recombinant replicated poorly in guinea pigs but still elicited specific antibodies against LASV and YFV17D antigens. A single subcutaneous injection of the recombinant vaccine protected strain 13 guinea pigs against fatal Lassa Fever. This study demonstrates the potential to develop an YFV17D-based bivalent vaccine against two viruses that are endemic in the same area of Africa.


Assuntos
Glicoproteínas/metabolismo , Febre Lassa/prevenção & controle , Vírus Lassa/metabolismo , Vacinas Sintéticas , Vacina contra Febre Amarela , Animais , Glicoproteínas/genética , Cobaias , Humanos , Vírus Lassa/genética , Vírus Lassa/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/metabolismo , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/metabolismo , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/administração & dosagem , Vacina contra Febre Amarela/genética , Vacina contra Febre Amarela/metabolismo , Vírus da Febre Amarela/imunologia
14.
J Virol ; 79(22): 13934-42, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16254329

RESUMO

Lassa virus (LASV) and Mopeia virus (MOPV) are closely related Old World arenaviruses that can exchange genomic segments (reassort) during coinfection. Clone ML29, selected from a library of MOPV/LASV (MOP/LAS) reassortants, encodes the major antigens (nucleocapsid and glycoprotein) of LASV and the RNA polymerase and zinc-binding protein of MOPV. Replication of ML29 was attenuated in guinea pigs and nonhuman primates. In murine adoptive-transfer experiments, as little as 150 PFU of ML29 induced protective cell-mediated immunity. All strain 13 guinea pigs vaccinated with clone ML29 survived at least 70 days after LASV challenge without either disease signs or histological lesions. Rhesus macaques inoculated with clone ML29 developed primary virus-specific T cells capable of secreting gamma interferon in response to homologous MOP/LAS and heterologous MOPV and lymphocytic choriomeningitis virus. Detailed examination of two rhesus macaques infected with this MOPV/LAS reassortant revealed no histological lesions or disease signs. Thus, ML29 is a promising attenuated vaccine candidate for Lassa fever.


Assuntos
Febre Lassa/imunologia , Vírus Lassa/imunologia , Vacinas Atenuadas , Vacinas Virais , Transferência Adotiva , Animais , Peso Corporal , Modelos Animais de Doenças , Cobaias , Febre Lassa/patologia , Vírus Lassa/genética , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos CBA , RNA Viral/genética , Baço/imunologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA