Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(7): e1012010, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39024382

RESUMO

During an infectious disease outbreak, public health policy makers are tasked with strategically implementing interventions whilst balancing competing objectives. To provide a quantitative framework that can be used to guide these decisions, it is helpful to devise a clear and specific objective function that can be evaluated to determine the optimal outbreak response. In this study, we have developed a mathematical modelling framework representing outbreaks of a novel emerging pathogen for which non-pharmaceutical interventions (NPIs) are imposed or removed based on thresholds for hospital occupancy. These thresholds are set at different levels to define four unique strategies for disease control. We illustrate that the optimal intervention strategy is contingent on the choice of objective function. Specifically, the optimal strategy depends on the extent to which policy makers prioritise reducing health costs due to infection over the costs associated with maintaining interventions. Motivated by the scenario early in the COVID-19 pandemic, we incorporate the development of a vaccine into our modelling framework and demonstrate that a policy maker's belief about when a vaccine will become available in future, and its eventual coverage (and/or effectiveness), affects the optimal strategy to adopt early in the outbreak. Furthermore, we show how uncertainty in these quantities can be accounted for when deciding which interventions to introduce. This research highlights the benefits of policy makers being explicit about the precise objectives of introducing interventions.


Assuntos
COVID-19 , Análise Custo-Benefício , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Incerteza , SARS-CoV-2 , Vacinas contra COVID-19/economia , Pandemias/prevenção & controle , Quarentena , Biologia Computacional , Surtos de Doenças/prevenção & controle , Modelos Teóricos , Epidemias/prevenção & controle
2.
PLoS Biol ; 19(6): e3001307, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138840

RESUMO

More than 1.6 million Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) tests were administered daily in the United States at the peak of the epidemic, with a significant focus on individual treatment. Here, we show that objective-driven, strategic sampling designs and analyses can maximize information gain at the population level, which is necessary to increase situational awareness and predict, prepare for, and respond to a pandemic, while also continuing to inform individual treatment. By focusing on specific objectives such as individual treatment or disease prediction and control (e.g., via the collection of population-level statistics to inform lockdown measures or vaccine rollout) and drawing from the literature on capture-recapture methods to deal with nonrandom sampling and testing errors, we illustrate how public health objectives can be achieved even with limited test availability when testing programs are designed a priori to meet those objectives.


Assuntos
Monitoramento Epidemiológico , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , Humanos , Pandemias/prevenção & controle , Saúde Pública , Alocação de Recursos , SARS-CoV-2/isolamento & purificação , Vigilância de Evento Sentinela , Estados Unidos/epidemiologia
3.
PLoS Comput Biol ; 19(12): e1011187, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38100528

RESUMO

Quarantine has been long used as a public health response to emerging infectious diseases, particularly at the onset of an epidemic when the infected proportion of a population remains identifiable and logistically tractable. In theory, the same logic should apply to low-incidence infections; however, the application and impact of quarantine in low prevalence settings appears less common and lacks a formal analysis. Here, we present a quantitative framework using a series of progressively more biologically realistic models of canine rabies in domestic dogs and from dogs to humans, a suitable example system to characterize dynamical changes under varying levels of dog quarantine. We explicitly incorporate health-seeking behaviour data to inform the modelling of contact-tracing and exclusion of rabies suspect and probable dogs that can be identified through bite-histories of patients presenting at anti-rabies clinics. We find that a temporary quarantine of rabies suspect and probable dogs provides a powerful tool to curtail rabies transmission, especially in settings where optimal vaccination coverage is yet to be achieved, providing a critical stopgap to reduce the number of human and animal deaths due to rabid bites. We conclude that whilst comprehensive measures including sensitive surveillance and large-scale vaccination of dogs will be required to achieve disease elimination and sustained freedom given the persistent risk of rabies re-introductions, quarantine offers a low-cost community driven solution to intersectoral health burden.


Assuntos
Doenças do Cão , Raiva , Humanos , Animais , Cães , Raiva/epidemiologia , Raiva/prevenção & controle , Raiva/veterinária , Quarentena , Doenças do Cão/epidemiologia , Doenças do Cão/prevenção & controle , Erradicação de Doenças , Saúde Pública
4.
PLoS Comput Biol ; 19(9): e1011448, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672554

RESUMO

African horse sickness is an equine orbivirus transmitted by Culicoides Latreille biting midges. In the last 80 years, it has caused several devastating outbreaks in the equine population in Europe, the Far and Middle East, North Africa, South-East Asia, and sub-Saharan Africa. The disease is endemic in South Africa; however, a unique control area has been set up in the Western Cape where increased surveillance and control measures have been put in place. A deterministic metapopulation model was developed to explore if an outbreak might occur, and how it might develop, if a latently infected horse was to be imported into the control area, by varying the geographical location and months of import. To do this, a previously published ordinary differential equation model was developed with a metapopulation approach and included a vaccinated horse population. Outbreak length, time to peak infection, number of infected horses at the peak, number of horses overall affected (recovered or dead), re-emergence, and Rv (the basic reproduction number in the presence of vaccination) were recorded and displayed using GIS mapping. The model predictions were compared to previous outbreak data to ensure validity. The warmer months (November to March) had longer outbreaks than the colder months (May to September), took more time to reach the peak, and had a greater total outbreak size with more horses infected at the peak. Rv appeared to be a poor predictor of outbreak dynamics for this simulation. A sensitivity analysis indicated that control measures such as vaccination and vector control are potentially effective to manage the spread of an outbreak, and shortening the vaccination window to July to September may reduce the risk of vaccine-associated outbreaks.


Assuntos
Doença Equina Africana , Animais , Cavalos , África do Sul/epidemiologia , Doença Equina Africana/epidemiologia , Doença Equina Africana/prevenção & controle , Surtos de Doenças/veterinária , Número Básico de Reprodução , Simulação por Computador
5.
Emerg Infect Dis ; 29(10): 1999-2007, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640374

RESUMO

In British Columbia, Canada, initial growth of the SARS-CoV-2 Delta variant was slower than that reported in other jurisdictions. Delta became the dominant variant (>50% prevalence) within ≈7-13 weeks of first detection in regions within the United Kingdom and United States. In British Columbia, it remained at <10% of weekly incident COVID-19 cases for 13 weeks after first detection on March 21, 2021, eventually reaching dominance after 17 weeks. We describe the growth of Delta variant cases in British Columbia during March 1-June 30, 2021, and apply retrospective counterfactual modeling to examine factors for the initially low COVID-19 case rate after Delta introduction, such as vaccination coverage and nonpharmaceutical interventions. Growth of COVID-19 cases in the first 3 months after Delta emergence was likely limited in British Columbia because additional nonpharmaceutical interventions were implemented to reduce levels of contact at the end of March 2021, soon after variant emergence.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Colúmbia Britânica/epidemiologia , SARS-CoV-2/genética , Estudos Retrospectivos , COVID-19/epidemiologia , COVID-19/prevenção & controle
6.
PLoS Comput Biol ; 18(8): e1010354, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35984841

RESUMO

The structure of contact networks affects the likelihood of disease spread at the population scale and the risk of infection at any given node. Though this has been well characterized for both theoretical and empirical networks for the spread of epidemics on completely susceptible networks, the long-term impact of network structure on risk of infection with an endemic pathogen, where nodes can be infected more than once, has been less well characterized. Here, we analyze detailed records of the transportation of cattle among farms in Turkey to characterize the global and local attributes of the directed-weighted shipments network between 2007-2012. We then study the correlations between network properties and the likelihood of infection with, or exposure to, foot-and-mouth disease (FMD) over the same time period using recorded outbreaks. The shipments network shows a complex combination of features (local and global) that have not been previously reported in other networks of shipments; i.e. small-worldness, scale-freeness, modular structure, among others. We find that nodes that were either infected or at high risk of infection with FMD (within one link from an infected farm) had disproportionately higher degree, were more central (eigenvector centrality and coreness), and were more likely to be net recipients of shipments compared to those that were always more than 2 links away from an infected farm. High in-degree (i.e. many shipments received) was the best univariate predictor of infection. Low in-coreness (i.e. peripheral nodes) was the best univariate predictor of nodes always more than 2 links away from an infected farm. These results are robust across the three different serotypes of FMD observed in Turkey and during periods of low-endemic prevalence and high-prevalence outbreaks.


Assuntos
Doenças dos Bovinos , Epidemias , Febre Aftosa , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Epidemias/veterinária , Fazendas , Febre Aftosa/epidemiologia , Turquia/epidemiologia
7.
PLoS Comput Biol ; 18(5): e1010158, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35622860

RESUMO

Rapid testing strategies that replace the isolation of close contacts through the use of lateral flow device tests (LFTs) have been suggested as a way of controlling SARS-CoV-2 transmission within schools that maintain low levels of pupil absences. We developed an individual-based model of a secondary school formed of exclusive year group bubbles (five year groups, with 200 pupils per year) to assess the likely impact of strategies using LFTs in secondary schools over the course of a seven-week half-term on transmission, absences, and testing volume, compared to a policy of isolating year group bubbles upon a pupil returning a positive polymerase chain reaction (PCR) test. We also considered the sensitivity of results to levels of participation in rapid testing and underlying model assumptions. While repeated testing of year group bubbles following case detection is less effective at reducing infections than a policy of isolating year group bubbles, strategies involving twice weekly mass testing can reduce infections to lower levels than would occur under year group isolation. By combining regular testing with serial contact testing or isolation, infection levels can be reduced further still. At high levels of pupil participation in lateral flow testing, strategies replacing the isolation of year group bubbles with testing substantially reduce absences, but require a high volume of testing. Our results highlight the conflict between the goals of minimising within-school transmission, minimising absences and minimising testing burden. While rapid testing strategies can reduce school transmission and absences, they may lead to a large number of daily tests.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , Humanos , Instituições Acadêmicas
8.
PLoS Comput Biol ; 18(7): e1010235, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35834473

RESUMO

The spread of infection amongst livestock depends not only on the traits of the pathogen and the livestock themselves, but also on the veterinary health behaviours of farmers and how this impacts their implementation of disease control measures. Controls that are costly may make it beneficial for individuals to rely on the protection offered by others, though that may be sub-optimal for the population. Failing to account for socio-behavioural properties may produce a substantial layer of bias in infectious disease models. We investigated the role of heterogeneity in vaccine response across a population of farmers on epidemic outbreaks amongst livestock, caused by pathogens with differential speed of spread over spatial landscapes of farms for two counties in England (Cumbria and Devon). Under different compositions of three vaccine behaviour groups (precautionary, reactionary, non-vaccination), we evaluated from population- and individual-level perspectives the optimum threshold distance to premises with notified infection that would trigger responsive vaccination by the reactionary vaccination group. We demonstrate a divergence between population and individual perspectives in the optimal scale of reactive voluntary vaccination response. In general, minimising the population-level perspective cost requires a broader reactive uptake of the intervention, whilst optimising the outcome for the average individual increased the likelihood of larger scale disease outbreaks. When the relative cost of vaccination was low and the majority of premises had undergone precautionary vaccination, then adopting a perspective that optimised the outcome for an individual gave a broader spatial extent of reactive response compared to a perspective wanting to optimise outcomes for everyone in the population. Under our assumed epidemiological context, the findings identify livestock disease intervention receptiveness and cost combinations where one would expect strong disagreement between the intervention stringency that is best from the perspective of a stakeholder responsible for supporting the livestock industry compared to a sole livestock owner. Were such discord anticipated and achieving a consensus view across perspectives desired, the findings may also inform those managing veterinary health policy the requisite reduction in intervention cost and/or the required extent of nurturing beneficial community attitudes towards interventions.


Assuntos
Doenças Transmissíveis , Gado , Animais , Controle de Doenças Transmissíveis , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Humanos , Políticas
9.
PLoS Comput Biol ; 17(5): e1008849, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956791

RESUMO

The COVID-19 outbreak has highlighted our vulnerability to novel infections. Faced with this threat and no effective treatment, in line with many other countries, the UK adopted enforced social distancing (lockdown) to reduce transmission-successfully reducing the reproductive number R below one. However, given the large pool of susceptible individuals that remain, complete relaxation of controls is likely to generate a substantial further outbreak. Vaccination remains the only foreseeable means of both containing the infection and returning to normal interactions and behaviour. Here, we consider the optimal targeting of vaccination within the UK, with the aim of minimising future deaths or quality adjusted life year (QALY) losses. We show that, for a range of assumptions on the action and efficacy of the vaccine, targeting older age groups first is optimal and may be sufficient to stem the epidemic if the vaccine prevents transmission as well as disease.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/imunologia , Simulação por Computador , Vacinação , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Controle de Doenças Transmissíveis , Humanos , Imunidade Coletiva , Reino Unido/epidemiologia
10.
PLoS Comput Biol ; 17(6): e1009058, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34133427

RESUMO

As part of a concerted pandemic response to protect public health, businesses can enact non-pharmaceutical controls to minimise exposure to pathogens in workplaces and premises open to the public. Amendments to working practices can lead to the amount, duration and/or proximity of interactions being changed, ultimately altering the dynamics of disease spread. These modifications could be specific to the type of business being operated. We use a data-driven approach to parameterise an individual-based network model for transmission of SARS-CoV-2 amongst the working population, stratified into work sectors. The network is comprised of layered contacts to consider the risk of spread in multiple encounter settings (workplaces, households, social and other). We analyse several interventions targeted towards working practices: mandating a fraction of the population to work from home; using temporally asynchronous work patterns; and introducing measures to create 'COVID-secure' workplaces. We also assess the general role of adherence to (or effectiveness of) isolation and test and trace measures and demonstrate the impact of all these interventions across a variety of relevant metrics. The progress of the epidemic can be significantly hindered by instructing a significant proportion of the workforce to work from home. Furthermore, if required to be present at the workplace, asynchronous work patterns can help to reduce infections when compared with scenarios where all workers work on the same days, particularly for longer working weeks. When assessing COVID-secure workplace measures, we found that smaller work teams and a greater reduction in transmission risk reduced the probability of large, prolonged outbreaks. Finally, following isolation guidance and engaging with contact tracing without other measures is an effective tool to curb transmission, but is highly sensitive to adherence levels. In the absence of sufficient adherence to non-pharmaceutical interventions, our results indicate a high likelihood of SARS-CoV-2 spreading widely throughout a worker population. Given the heterogeneity of demographic attributes across worker roles, in addition to the individual nature of controls such as contact tracing, we demonstrate the utility of a network model approach to investigate workplace-targeted intervention strategies and the role of test, trace and isolation in tackling disease spread.


Assuntos
COVID-19/prevenção & controle , Busca de Comunicante , Modelos Biológicos , Local de Trabalho , COVID-19/epidemiologia , COVID-19/transmissão , Fidelidade a Diretrizes/estatística & dados numéricos , Humanos , Pandemias , Saúde Pública , SARS-CoV-2 , Trabalho/estatística & dados numéricos
11.
PLoS Comput Biol ; 17(1): e1008619, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481773

RESUMO

Efforts to suppress transmission of SARS-CoV-2 in the UK have seen non-pharmaceutical interventions being invoked. The most severe measures to date include all restaurants, pubs and cafes being ordered to close on 20th March, followed by a "stay at home" order on the 23rd March and the closure of all non-essential retail outlets for an indefinite period. Government agencies are presently analysing how best to develop an exit strategy from these measures and to determine how the epidemic may progress once measures are lifted. Mathematical models are currently providing short and long term forecasts regarding the future course of the COVID-19 outbreak in the UK to support evidence-based policymaking. We present a deterministic, age-structured transmission model that uses real-time data on confirmed cases requiring hospital care and mortality to provide up-to-date predictions on epidemic spread in ten regions of the UK. The model captures a range of age-dependent heterogeneities, reduced transmission from asymptomatic infections and produces a good fit to the key epidemic features over time. We simulated a suite of scenarios to assess the impact of differing approaches to relaxing social distancing measures from 7th May 2020 on the estimated number of patients requiring inpatient and critical care treatment, and deaths. With regard to future epidemic outcomes, we investigated the impact of reducing compliance, ongoing shielding of elder age groups, reapplying stringent social distancing measures using region based triggers and the role of asymptomatic transmission. We find that significant relaxation of social distancing measures from 7th May onwards can lead to a rapid resurgence of COVID-19 disease and the health system being quickly overwhelmed by a sizeable, second epidemic wave. In all considered age-shielding based strategies, we projected serious demand on critical care resources during the course of the pandemic. The reintroduction and release of strict measures on a regional basis, based on ICU bed occupancy, results in a long epidemic tail, until the second half of 2021, but ensures that the health service is protected by reintroducing social distancing measures for all individuals in a region when required. Our work confirms the effectiveness of stringent non-pharmaceutical measures in March 2020 to suppress the epidemic. It also provides strong evidence to support the need for a cautious, measured approach to relaxation of lockdown measures, to protect the most vulnerable members of society and support the health service through subduing demand on hospital beds, in particular bed occupancy in intensive care units.


Assuntos
COVID-19 , Modelos Estatísticos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Criança , Previsões , Humanos , Pessoa de Meia-Idade , Pandemias , Anos de Vida Ajustados por Qualidade de Vida , SARS-CoV-2 , Reino Unido/epidemiologia , Adulto Jovem
12.
PLoS Comput Biol ; 17(10): e1009518, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710096

RESUMO

Stay-at-home orders and shutdowns of non-essential businesses are powerful, but socially costly, tools to control the pandemic spread of SARS-CoV-2. Mass testing strategies, which rely on widely administered frequent and rapid diagnostics to identify and isolate infected individuals, could be a potentially less disruptive management strategy, particularly where vaccine access is limited. In this paper, we assess the extent to which mass testing and isolation strategies can reduce reliance on socially costly non-pharmaceutical interventions, such as distancing and shutdowns. We develop a multi-compartmental model of SARS-CoV-2 transmission incorporating both preventative non-pharmaceutical interventions (NPIs) and testing and isolation to evaluate their combined effect on public health outcomes. Our model is designed to be a policy-guiding tool that captures important realities of the testing system, including constraints on test administration and non-random testing allocation. We show how strategic changes in the characteristics of the testing system, including test administration, test delays, and test sensitivity, can reduce reliance on preventative NPIs without compromising public health outcomes in the future. The lowest NPI levels are possible only when many tests are administered and test delays are short, given limited immunity in the population. Reducing reliance on NPIs is highly dependent on the ability of a testing program to identify and isolate unreported, asymptomatic infections. Changes in NPIs, including the intensity of lockdowns and stay at home orders, should be coordinated with increases in testing to ensure epidemic control; otherwise small additional lifting of these NPIs can lead to dramatic increases in infections, hospitalizations and deaths. Importantly, our results can be used to guide ramp-up of testing capacity in outbreak settings, allow for the flexible design of combined interventions based on social context, and inform future cost-benefit analyses to identify efficient pandemic management strategies.


Assuntos
COVID-19/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2 , COVID-19/epidemiologia , Teste para COVID-19/métodos , Controle de Doenças Transmissíveis/métodos , Biologia Computacional , Simulação por Computador , Análise Custo-Benefício , Humanos , Modelos Biológicos , Distanciamento Físico
13.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210314, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35965457

RESUMO

Mathematical modelling is used during disease outbreaks to compare control interventions. Using multiple models, the best method to combine model recommendations is unclear. Existing methods weight model projections, then rank control interventions using the combined projections, presuming model outputs are directly comparable. However, the way each model represents the epidemiological system will vary. We apply electoral vote-processing rules to combine model-generated rankings of interventions. Combining rankings of interventions, instead of combining model projections, avoids assuming that projections are comparable as all comparisons of projections are made within each model. We investigate four rules: First-past-the-post, Alternative Vote (AV), Coombs Method and Borda Count. We investigate rule sensitivity by including models that favour only one action or including those that rank interventions randomly. We investigate two case studies: the 2014 Ebola outbreak in West Africa (37 compartmental models) and a hypothetical foot-and-mouth disease outbreak in UK (four individual-based models). The Coombs Method was least susceptible to adding models that favoured a single action, Borda Count and AV were most susceptible to adding models that ranked interventions randomly. Each rule chose the same intervention as when ranking interventions by mean projections, suggesting that combining rankings provides similar recommendations with fewer assumptions about model comparability. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Assuntos
Surtos de Doenças , Modelos Teóricos , Animais , Surtos de Doenças/prevenção & controle
14.
BMC Med ; 19(1): 137, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34092228

RESUMO

BACKGROUND: The introduction of SARS-CoV-2, the virus that causes COVID-19 infection, in the UK in early 2020, resulted in the introduction of several control policies to reduce disease spread. As part of these restrictions, schools were closed to all pupils in March (except for vulnerable and key worker children), before re-opening to certain year groups in June. Finally, all school children returned to the classroom in September. METHODS: Here, we analyse data on school absences in late 2020 as a result of COVID-19 infection and how that varied through time as other measures in the community were introduced. We utilise data from the Department for Education Educational Settings database and examine how pupil and teacher absences change in both primary and secondary schools. RESULTS: Our results show that absences as a result of COVID-19 infection rose steadily following the re-opening of schools in September. Cases in teachers declined during the November lockdown, particularly in regions previously in tier 3, the highest level of control at the time. Cases in secondary school pupils increased for the first 2 weeks of the November lockdown, before decreasing. Since the introduction of the tier system, the number of absences with confirmed infection in primary schools was observed to be (markedly) lower than that in secondary schools. In December, we observed a large rise in the number of absences per school in secondary school settings in the South East and London, but such rises were not observed in other regions or in primary school settings. We conjecture that the increased transmissibility of the new variant in these regions may have contributed to this rise in secondary school cases. Finally, we observe a positive correlation between cases in the community and cases in schools in most regions, with weak evidence suggesting that cases in schools lag behind cases in the surrounding community. CONCLUSIONS: We conclude that there is no significant evidence to suggest that schools are playing a substantial role in driving spread in the community and that careful monitoring may be required as schools re-open to determine the effect associated with open schools upon community incidence.


Assuntos
Absenteísmo , COVID-19/epidemiologia , Instituições Acadêmicas/estatística & dados numéricos , Inglaterra/epidemiologia , Feminino , Humanos , Incidência , Masculino , Pandemias , SARS-CoV-2/isolamento & purificação
15.
PLoS Comput Biol ; 16(9): e1007836, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32960900

RESUMO

Early warning signals (EWS) identify systems approaching a critical transition, where the system undergoes a sudden change in state. For example, monitoring changes in variance or autocorrelation offers a computationally inexpensive method which can be used in real-time to assess when an infectious disease transitions to elimination. EWS have a promising potential to not only be used to monitor infectious diseases, but also to inform control policies to aid disease elimination. Previously, potential EWS have been identified for prevalence data, however the prevalence of a disease is often not known directly. In this work we identify EWS for incidence data, the standard data type collected by the Centers for Disease Control and Prevention (CDC) or World Health Organization (WHO). We show, through several examples, that EWS calculated on simulated incidence time series data exhibit vastly different behaviours to those previously studied on prevalence data. In particular, the variance displays a decreasing trend on the approach to disease elimination, contrary to that expected from critical slowing down theory; this could lead to unreliable indicators of elimination when calculated on real-world data. We derive analytical predictions which can be generalised for many epidemiological systems, and we support our theory with simulated studies of disease incidence. Additionally, we explore EWS calculated on the rate of incidence over time, a property which can be extracted directly from incidence data. We find that although incidence might not exhibit typical critical slowing down properties before a critical transition, the rate of incidence does, presenting a promising new data type for the application of statistical indicators.


Assuntos
Doenças Transmissíveis/epidemiologia , Biologia Computacional/métodos , Modelos Estatísticos , Vigilância em Saúde Pública/métodos , Controle de Doenças Transmissíveis , Humanos , Incidência , Prevalência
16.
PLoS Comput Biol ; 16(2): e1007641, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32078622

RESUMO

Spatially explicit livestock disease models require demographic data for individual farms or premises. In the U.S., demographic data are only available aggregated at county or coarser scales, so disease models must rely on assumptions about how individual premises are distributed within counties. Here, we addressed the importance of realistic assumptions for this purpose. We compared modeling of foot and mouth disease (FMD) outbreaks using simple randomization of locations to premises configurations predicted by the Farm Location and Agricultural Production Simulator (FLAPS), which infers location based on features such as topography, land-cover, climate, and roads. We focused on three premises-level Susceptible-Exposed-Infectious-Removed models available from the literature, all using the same kernel approach but with different parameterizations and functional forms. By computing the basic reproductive number of the infection (R0) for both FLAPS and randomized configurations, we investigated how spatial locations and clustering of premises affects outbreak predictions. Further, we performed stochastic simulations to evaluate if identified differences were consistent for later stages of an outbreak. Using Ripley's K to quantify clustering, we found that FLAPS configurations were substantially more clustered at the scales relevant for the implemented models, leading to a higher frequency of nearby premises compared to randomized configurations. As a result, R0 was typically higher in FLAPS configurations, and the simulation study corroborated the pattern for later stages of outbreaks. Further, both R0 and simulations exhibited substantial spatial heterogeneity in terms of differences between configurations. Thus, using realistic assumptions when de-aggregating locations based on available data can have a pronounced effect on epidemiological predictions, affecting if, where, and to what extent FMD may invade the population. We conclude that methods such as FLAPS should be preferred over randomization approaches.


Assuntos
Agricultura , Febre Aftosa/epidemiologia , Gado , Animais , Número Básico de Reprodução , Bovinos , Análise por Conglomerados , Simulação por Computador , Surtos de Doenças/veterinária , Geografia , Modelos Teóricos , Linguagens de Programação , Análise de Regressão , Processos Estocásticos , Estados Unidos/epidemiologia
17.
Emerg Infect Dis ; 26(11): 2685-2693, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079046

RESUMO

Yaws is a neglected tropical disease targeted for eradication by 2030. To achieve eradication, finding and treating asymptomatic infections as well as clinical cases is crucial. The proposed plan, the Morges strategy, involves rounds of total community treatment (i.e., treating the whole population) and total targeted treatment (TTT) (i.e., treating clinical cases and contacts). However, modeling and empirical work suggests asymptomatic infections often are not found in the same households as clinical cases, reducing the utility of household-based contact tracing for a TTT strategy. We use a model fitted to data from the Solomon Islands to predict the likelihood of elimination of transmission under different intervention schemes and levels of systematic nontreatment resulting from the intervention. Our results indicate that implementing additional treatment rounds through total community treatment is more effective than conducting additional rounds of treatment of at-risk persons through TTT.


Assuntos
Erradicação de Doenças , Bouba , Busca de Comunicante , Humanos , Melanesia , Modelos Teóricos , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/prevenção & controle , Treponema pallidum , Bouba/tratamento farmacológico , Bouba/epidemiologia , Bouba/prevenção & controle
18.
Proc Biol Sci ; 287(1932): 20201405, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32781946

RESUMO

Combinations of intense non-pharmaceutical interventions (lockdowns) were introduced worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement exit strategies that relax restrictions while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, would allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. This roadmap requires a global collaborative effort from the scientific community and policymakers, and has three parts: (i) improve estimation of key epidemiological parameters; (ii) understand sources of heterogeneity in populations; and (iii) focus on requirements for data collection, particularly in low-to-middle-income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Imunidade Coletiva , Modelos Teóricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , COVID-19 , Criança , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Erradicação de Doenças , Características da Família , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Instituições Acadêmicas , Estudos Soroepidemiológicos
19.
J Theor Biol ; 506: 110380, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32698028

RESUMO

Infectious disease epidemics present a difficult task for policymakers, requiring the implementation of control strategies under significant time constraints and uncertainty. Mathematical models can be used to predict the outcome of control interventions, providing useful information to policymakers in the event of such an epidemic. However, these models suffer in the early stages of an outbreak from a lack of accurate, relevant information regarding the dynamics and spread of the disease and the efficacy of control. As such, recommendations provided by these models are often incorporated in an ad hoc fashion, as and when more reliable information becomes available. In this work, we show that such trial-and-error-type approaches to management, which do not formally take into account the resolution of uncertainty and how control actions affect this, can lead to sub-optimal management outcomes. We compare three approaches to managing a theoretical epidemic: a non-adaptive management (AM) approach that does not use real-time outbreak information to adapt control, a passive AM approach that incorporates real-time information if and when it becomes available, and an active AM approach that explicitly incorporates the future resolution of uncertainty through gathering real-time information into its initial recommendations. The structured framework of active AM encourages the specification of quantifiable objectives, models of system behaviour and possible control and monitoring actions, followed by an iterative learning and control phase that is able to employ complex control optimisations and resolve system uncertainty. The result is a management framework that is able to provide dynamic, long-term projections to help policymakers meet the objectives of management. We investigate in detail the effect of different methods of incorporating up-to-date outbreak information. We find that, even in a highly simplified system, the method of incorporating new data can lead to different results that may influence initial policy decisions, with an active AM approach to management providing better information that can lead to more desirable outcomes from an epidemic.


Assuntos
Surtos de Doenças , Epidemias , Surtos de Doenças/prevenção & controle , Humanos , Aprendizagem , Modelos Teóricos , Incerteza
20.
Proc Natl Acad Sci U S A ; 114(22): 5659-5664, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507121

RESUMO

Early resolution of uncertainty during an epidemic outbreak can lead to rapid and efficient decision making, provided that the uncertainty affects prioritization of actions. The wide range in caseload projections for the 2014 Ebola outbreak caused great concern and debate about the utility of models. By coding and running 37 published Ebola models with five candidate interventions, we found that, despite this large variation in caseload projection, the ranking of management options was relatively consistent. Reducing funeral transmission and reducing community transmission were generally ranked as the two best options. Value of information (VoI) analyses show that caseloads could be reduced by 11% by resolving all model-specific uncertainties, with information about model structure accounting for 82% of this reduction and uncertainty about caseload only accounting for 12%. Our study shows that the uncertainty that is of most interest epidemiologically may not be the same as the uncertainty that is most relevant for management. If the goal is to improve management outcomes, then the focus of study should be to identify and resolve those uncertainties that most hinder the choice of an optimal intervention. Our study further shows that simplifying multiple alternative models into a smaller number of relevant groups (here, with shared structure) could streamline the decision-making process and may allow for a better integration of epidemiological modeling and decision making for policy.


Assuntos
Administração de Caso , Tomada de Decisões , Gerenciamento Clínico , Epidemias/prevenção & controle , Doença pelo Vírus Ebola/transmissão , África Ocidental/epidemiologia , Simulação por Computador , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA