Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(26): 8117-8125, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38901032

RESUMO

Transition metal dichalcogenides (TMDs) are quantum confined systems with interesting optoelectronic properties, governed by Coulomb interactions in the monolayer (1L) limit, where strongly bound excitons provide a sensitive probe for many-body interactions. Here, we use two-dimensional electronic spectroscopy (2DES) to investigate many-body interactions and their dynamics in 1L-WS2 at room temperature and with sub-10 fs time resolution. Our data reveal coherent interactions between the strongly detuned A and B exciton states in 1L-WS2. Pronounced ultrafast oscillations of the transient optical response of the B exciton are the signature of a coherent 50 meV coupling and coherent population oscillations between the two exciton states. Supported by microscopic semiconductor Bloch equation simulations, these coherent dynamics are rationalized in terms of Dexter-like interactions. Our work sheds light on the role of coherent exciton couplings and many-body interactions in the ultrafast temporal evolution of spin and valley states in TMDs.

2.
Opt Express ; 32(1): 835-847, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175103

RESUMO

Two-dimensional electronic spectroscopy (2DES) is a powerful method to study coherent and incoherent interactions and dynamics in complex quantum systems by correlating excitation and detection energies in a nonlinear spectroscopy experiment. Such dynamics can be probed with a time resolution limited only by the duration of the employed laser pulses and in a spectral range defined by the pulse spectrum. In the blue spectral range (<500 nm), the generation of sufficiently broadband ultrashort pulses with pulse durations of 10 fs or less has been challenging so far. Here, we present a 2DES setup based on a hollow-core fiber supercontinuum covering the full visible range (400-700 nm). Pulse compression via custom-made chirped mirrors yields a time resolution of <10 fs. The broad spectral coverage, in particular the extension of the pulse spectra into the blue spectral range, unlocks new possibilities for coherent investigations of blue-light absorbing and multichromophoric compounds, as demonstrated by a 2DES measurement of chlorophyll a.

3.
J Am Chem Soc ; 145(21): 11566-11578, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37195086

RESUMO

The primary step in the mechanism by which migratory birds sense the Earth's magnetic field is thought to be the light-induced formation of long-lived magnetically sensitive radical pairs within cryptochrome flavoproteins located in the birds' retinas. Blue-light absorption by the non-covalently bound flavin chromophore triggers sequential electron transfers along a chain of four tryptophan residues toward the photoexcited flavin. The recently demonstrated ability to express cryptochrome 4a from the night-migratory European robin (Erithacus rubecula), ErCry4a, and to replace each of the tryptophan residues by a redox-inactive phenylalanine offers the prospect of exploring the roles of the four tryptophans. Here, we use ultrafast transient absorption spectroscopy to compare wild type ErCry4a and four mutants having a phenylalanine at different positions in the chain. We find that each of the three tryptophan residues closest to the flavin adds a distinct relaxation component (time constants: 0.5, 30, and 150 ps) in the transient absorption data. The dynamics of the mutant containing a phenylalanine at the fourth position, furthest from the flavin, are very similar to those of wild type ErCry4a, except for a reduced concentration of long-lived radical pairs. The experimental results are evaluated and discussed in the framework of real-time quantum mechanical/molecular mechanical electron transfer simulations based on the density functional-based tight binding approach. This comparison between simulation results and experimental measurements provides a detailed microscopic insight into the sequential electron transfers along the tryptophan chain. Our results offer a route to the study of spin transport and dynamical spin correlations in flavoprotein radical pairs.


Assuntos
Criptocromos , Triptofano , Criptocromos/química , Triptofano/química , Elétrons , Transporte de Elétrons , Campos Magnéticos , Flavinas/metabolismo
4.
J Am Chem Soc ; 144(41): 19150-19162, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36206456

RESUMO

Squaraines are prototypical quadrupolar charge-transfer chromophores that have recently attracted much attention as building blocks for solution-processed photovoltaics, fluorescent probes with large two-photon absorption cross sections, and aggregates with large circular dichroism. Their optical properties are often rationalized in terms of phenomenological essential state models, considering the coupling of two zwitterionic excited states to a neutral ground state. As a result, optical transitions to the lowest S1 excited state are one-photon allowed, whereas the next higher S2 state can only be accessed by two-photon transitions. A further implication of these models is a substantial reduction of vibronic coupling to the ubiquitous high-frequency vinyl-stretching modes of organic materials. Here, we combine time-resolved vibrational spectroscopy, two-dimensional electronic spectroscopy, and quantum-chemical simulations to test and rationalize these predictions for nonaggregated molecules. We find small Huang-Rhys factors below 0.01 for the high-frequency, 1500 cm-1 modes in particular, as well as a noticeable reduction for those of lower frequency modes in general for the electronic S0 → S1 transition. The two-photon allowed state S2 is well separated energetically from S1 and has weak vibronic signatures as well. Thus, the resulting pronounced concentration of the oscillator strength in a narrow region relevant to the lowest electronic transition makes squaraines and their aggregates exceptionally interesting for strong and ultrastrong coupling of excitons to localized light modes in external resonators with chiral properties that can largely be controlled by the molecular architecture.

5.
Opt Express ; 25(11): 12518-12530, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28786608

RESUMO

We apply ultrafast polarization shaping to an ultrabroadband carrier envelope phase (CEP) stable white light supercontinuum to generate polarization-tailored bichromatic laser fields of low-order frequency ratio. The generation of orthogonal linearly and counter-rotating circularly polarized bichromatic fields is achieved by introducing a composite polarizer in the Fourier plane of a 4 f polarization shaper. The resulting Lissajous- and propeller-type polarization profiles are characterized experimentally by cross-correlation trajectories. The scheme provides full control over all bichromatic parameters and allows for individual spectral phase modulation of both colors. Shaper-based CEP control and the generation of tailored bichromatic fields is demonstrated. These bichromatic CEP-stable polarization-shaped ultrashort laser pulses provide a versatile class of waveforms for coherent control experiments.

6.
Nat Commun ; 14(1): 1047, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828818

RESUMO

Coupling electromagnetic radiation with matter, e.g., by resonant light fields in external optical cavities, is highly promising for tailoring the optoelectronic properties of functional materials on the nanoscale. Here, we demonstrate that even internal fields induced by coherent lattice motions can be used to control the transient excitonic optical response in CsPbBr3 halide perovskite crystals. Upon resonant photoexcitation, two-dimensional electronic spectroscopy reveals an excitonic peak structure oscillating persistently with a 100-fs period for up to ~2 ps which does not match the frequency of any phonon modes of the crystals. Only at later times, beyond 2 ps, two low-frequency phonons of the lead-bromide lattice dominate the dynamics. We rationalize these findings by an unusual exciton-phonon coupling inducing off-resonant 100-fs Rabi oscillations between 1s and 2p excitons driven by the low-frequency phonons. As such, prevailing models for the electron-phonon coupling in halide perovskites are insufficient to explain these results. We propose the coupling of characteristic low-frequency phonon fields to intra-excitonic transitions in halide perovskites as the key to control the anharmonic response of these materials in order to establish new routes for enhancing their optoelectronic properties.


Assuntos
Compostos Inorgânicos , Fônons , Compostos de Cálcio , Óxidos
7.
Nat Commun ; 14(1): 8035, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052786

RESUMO

The strong coherent coupling of quantum emitters to vacuum fluctuations of the light field offers opportunities for manipulating the optical and transport properties of nanomaterials, with potential applications ranging from ultrasensitive all-optical switching to creating polariton condensates. Often, ubiquitous decoherence processes at ambient conditions limit these couplings to such short time scales that the quantum dynamics of the interacting system remains elusive. Prominent examples are strongly coupled exciton-plasmon systems, which, so far, have mostly been investigated by linear optical spectroscopy. Here, we use ultrafast two-dimensional electronic spectroscopy to probe the quantum dynamics of J-aggregate excitons collectively coupled to the spatially structured plasmonic fields of a gold nanoslit array. We observe rich coherent Rabi oscillation dynamics reflecting a plasmon-driven coherent exciton population transfer over mesoscopic distances at room temperature. This opens up new opportunities to manipulate the coherent transport of matter excitations by coupling to vacuum fields.

8.
ACS Nano ; 16(3): 4693-4704, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35188735

RESUMO

Enlarging exciton coherence lengths in molecular aggregates is critical for enhancing the collective optical and transport properties of molecular thin film nanostructures or devices. We demonstrate that the exciton coherence length of squaraine aggregates can be increased from 10 to 24 molecular units at room temperature when preparing the aggregated thin film on a metallic rather than a dielectric substrate. Two-dimensional electronic spectroscopy measurements reveal a much lower degree of inhomogeneous line broadening for aggregates on a gold film, pointing to a reduced disorder. The result is corroborated by simulations based on a Frenkel exciton model including exciton-plasmon coupling effects. The simulation shows that localized, energetically nearly resonant excitons on spatially well separated segments can be radiatively coupled via delocalized surface plasmon polariton modes at a planar molecule-gold interface. Such plasmon-enhanced delocalization of the exciton wave function is of high importance for improving the coherent transport properties of molecular aggregates on the nanoscale. Additionally, it may help tailor the collective optical response of organic materials for quantum optical applications.

9.
J Phys Chem Lett ; 10(18): 5414-5421, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31449755

RESUMO

Halide perovskites are promising optoelectronic materials. Despite impressive device performance, especially in photovoltaics, the femtosecond dynamics of elementary optical excitations and their interactions are still debated. Here we combine ultrafast two-dimensional electronic spectroscopy (2DES) and semiconductor Bloch equations (SBEs) to probe the room-temperature dynamics of nonequilibrium excitations in CsPbBr3 crystals. Experimentally, we distinguish between excitonic and free-carrier transitions, extracting a ∼30 meV exciton binding energy, in agreement with our SBE calculations and with recent experimental studies. The 2DES dynamics indicate remarkably short, <30 fs carrier relaxation at a ∼3 meV/fs rate, much faster than previously anticipated for this material, but similar to that in direct band gap semiconductors such as GaAs. Dynamic screening of excitons by free carriers also develops on a similarly fast <30 fs time scale, emphasizing the role of carrier-carrier interactions for this material's optical properties. Our results suggest that strong electron-phonon couplings lead to ultrafast relaxation of charge carriers, which, in turn may limit halide perovskites' carrier mobilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA