Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Transl Med ; 22(1): 43, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200582

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains a leading life-threatening health challenge worldwide, with pressing needs for novel therapeutic strategies. Sphingosine kinase 1 (SphK1), a well-established pro-cancer enzyme, is aberrantly overexpressed in a multitude of malignancies, including HCC. Our previous research has shown that genetic ablation of Sphk1 mitigates HCC progression in mice. Therefore, the development of PF-543, a highly selective SphK1 inhibitor, opens a new avenue for HCC treatment. However, the anti-cancer efficacy of PF-543 has not yet been investigated in primary cancer models in vivo, thereby limiting its further translation. METHODS: Building upon the identification of the active form of SphK1 as a viable therapeutic target in human HCC specimens, we assessed the capacity of PF-543 in suppressing tumor progression using a diethylnitrosamine-induced mouse model of primary HCC. We further delineated its underlying mechanisms in both HCC and endothelial cells. Key findings were validated in Sphk1 knockout mice and lentiviral-mediated SphK1 knockdown cells. RESULTS: SphK1 activity was found to be elevated in human HCC tissues. Administration of PF-543 effectively abrogated hepatic SphK1 activity and significantly suppressed HCC progression in diethylnitrosamine-treated mice. The primary mechanism of action was through the inhibition of tumor neovascularization, as PF-543 disrupted endothelial cell angiogenesis even in a pro-angiogenic milieu. Mechanistically, PF-543 induced proteasomal degradation of the critical glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, thus restricting the energy supply essential for tumor angiogenesis. These effects of PF-543 could be reversed upon S1P supplementation in an S1P receptor-dependent manner. CONCLUSIONS: This study provides the first in vivo evidence supporting the potential of PF-543 as an effective anti-HCC agent. It also uncovers previously undescribed links between the pro-cancer, pro-angiogenic and pro-glycolytic roles of the SphK1/S1P/S1P receptor axis. Importantly, unlike conventional anti-HCC drugs that target individual pro-angiogenic drivers, PF-543 impairs the PFKFB3-dictated glycolytic energy engine that fuels tumor angiogenesis, representing a novel and potentially safer therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfotransferases (Aceptor do Grupo Álcool) , Pirrolidinas , Sulfonas , Animais , Humanos , Camundongos , Angiogênese , Carcinoma Hepatocelular/genética , Dietilnitrosamina , Células Endoteliais , Neoplasias Hepáticas/genética , Metanol , Neovascularização Patológica , Fosfofrutoquinase-2 , Receptores de Esfingosina-1-Fosfato
2.
PLoS Biol ; 18(6): e3000734, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502201

RESUMO

Cerebral cavernous malformations (CCMs) are vascular lesions predominantly developing in the central nervous system (CNS), with no effective treatments other than surgery. Loss-of-function mutation in CCM1/krev interaction trapped 1 (KRIT1), CCM2, or CCM3/programmed cell death 10 (PDCD10) causes lesions that are characterized by abnormal vascular integrity. Vascular endothelial cadherin (VE-cadherin), a major regulator of endothelial cell (EC) junctional integrity is strongly disorganized in ECs lining the CCM lesions. We report here that microRNA-27a (miR-27a), a negative regulator of VE-cadherin, is elevated in ECs isolated from mouse brains developing early CCM lesions and in cultured ECs with CCM1 or CCM2 depletion. Furthermore, we show miR-27a acts downstream of kruppel-like factor (KLF)2 and KLF4, two known key transcription factors involved in CCM lesion development. Using CD5-2 (a target site blocker [TSB]) to prevent the miR-27a/VE-cadherin mRNA interaction, we present a potential therapy to increase VE-cadherin expression and thus rescue the abnormal vascular integrity. In CCM1- or CCM2-depleted ECs, CD5-2 reduces monolayer permeability, and in Ccm1 heterozygous mice, it restores dermal vessel barrier function. In a neonatal mouse model of CCM disease, CD5-2 normalizes vasculature and reduces vascular leakage in the lesions, inhibits the development of large lesions, and significantly reduces the size of established lesions in the hindbrain. Furthermore, CD5-2 limits the accumulation of inflammatory cells in the lesion area. Our work has established that VE-cadherin is a potential therapeutic target for normalization of the vasculature and highlights that targeting miR-27a/VE-cadherin interaction by CD5-2 is a potential novel therapy for the devastating disease, CCM.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , MicroRNAs/metabolismo , Animais , Regulação para Baixo/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Rombencéfalo/irrigação sanguínea , Rombencéfalo/patologia , Regulação para Cima/genética , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Cell Commun Signal ; 18(1): 18, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013974

RESUMO

BACKGROUND: Vascular endothelial cell alignment in the direction of flow is an adaptive response that protects against aortic diseases such as atherosclerosis. The RhoGTPases are known to regulate this alignment. We have shown previously that ARHGAP18 in endothelial cells is a negative regulator of RhoC and its expression is essential in flow-mediated alignment. Depletion of ARHGAP18 inhibits alignment and results in the induction of a pro-inflammatory phenotype. In embryogenesis, ARHGAP18 was identified as a downstream effector of the Yes-associated protein, YAP, which regulates cell shape and size. METHODS: We have used siRNA technology to deplete either ARHGAP18 or YAP in human endothelial cells. The in vitro studies were performed under athero-protective, laminar flow conditions. The analysis of YAP activity was also investigated, using high performance confocal imaging, in our ARHGAP18 knockout mutant mice. RESULTS: We show here that loss of ARHGAP18, although decreasing the expression of YAP results in its nuclear localisation consistent with activation. We further show that depletion of YAP itself results in its activation as defined by an in increase in its nuclear localisation and an increase in the YAP target gene, CyR61. Depletion of YAP, similar to that observed for ARHGAP18 depletion, results in loss of endothelial cell alignment under high shear stress mediated flow and also in the activation of NFkB, as determined by p65 nuclear localisation. In contrast, ARHGAP18 overexpression results in upregulation of YAP, its phosphorylation, and a decrease in the YAP target gene Cyr61, consistent with YAP inactivation. Finally, in ARHGAP18 deleted mice, in regions where there is a loss of endothelial cell alignment, a situation associated with a priming of the cells to a pro-inflammatory phenotype, YAP shows nuclear localisation. CONCLUSION: Our results show that YAP is downstream of ARHGAP18 in mature endothelial cells and that this pathway is involved in the athero-protective alignment of endothelial cells under laminar shear stress. ARHGAP18 depletion leads to a disruption of the junctions as seen by loss of VE-Cadherin localisation to these regions and a concomitant localisation of YAP to the nucleus.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Reologia , Fatores de Transcrição/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo , Animais , Aorta/metabolismo , Proteínas Ativadoras de GTPase/deficiência , Deleção de Genes , Humanos , Masculino , Camundongos Knockout , Proteínas de Sinalização YAP
4.
Diabetologia ; 62(2): 322-334, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30443753

RESUMO

AIMS/HYPOTHESIS: A major feature of diabetic retinopathy is breakdown of the blood-retinal barrier, resulting in macular oedema. We have developed a novel oligonucleotide-based drug, CD5-2, that specifically increases expression of the key junctional protein involved in barrier integrity in endothelial cells, vascular-endothelial-specific cadherin (VE-cadherin). CD5-2 prevents the mRNA silencing by the pro-angiogenic microRNA, miR-27a. CD5-2 was evaluated in animal models of ocular neovascularisation and vascular leak to determine its potential efficacy for diabetic retinopathy. METHODS: CD5-2 was tested in three mouse models of retinal dysfunction: conditional Müller cell depletion, streptozotocin-induced diabetes and oxygen-induced retinopathy. Vascular permeability in the Müller cell-knockout model was assessed by fluorescein angiography. The Evans Blue leakage method was used to determine vascular permeability in streptozotocin- and oxygen-induced retinopathy models. The effects of CD5-2 on retinal neovascularisation, inter-endothelial junctions and pericyte coverage in streptozotocin- and oxygen-induced retinopathy models were determined by staining for isolectin-B4, VE-cadherin and neural/glial antigen 2 (NG2). Blockmir CD5-2 localisation in diseased retina was determined using fluorescent in situ hybridisation. The effects of CD5-2 on VE-cadherin expression and in diabetic retinopathy-associated pathways, such as the transforming growth factor beta (TGF-ß) and wingless/integrated (WNT) pathway, were confirmed using western blot of lysates from HUVECs, a mouse brain endothelial cell line and a VE-cadherin null mouse endothelial cell line. RESULTS: CD5-2 penetrated the vasculature of the eye in the oxygen-induced retinopathy model. Treatment of diseased mice with CD5-2 resulted in reduced vascular leak in all three animal models, enhanced expression of VE-cadherin in the microvessels of the eye and improved pericyte coverage of the retinal vasculature in streptozotocin-induced diabetic models and oxygen-induced retinopathy models. Further, CD5-2 reduced the activation of retinal microglial cells in the streptozotocin-induced diabetic model. The positive effects of CD5-2 seen in vivo were further confirmed in vitro by increased protein expression of VE-cadherin, SMAD2/3 activity, and platelet-derived growth factor B (PDGF-B). CONCLUSIONS/INTERPRETATION: CD5-2 has therapeutic potential for individuals with vascular-leak-associated retinal diseases based on its ease of delivery and its ability to reverse vascular dysfunction and inflammatory aspects in three animal models of retinopathy.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Animais , Barreira Hematorretiniana/metabolismo , Permeabilidade Capilar , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Camundongos , Retina/metabolismo , Vasos Retinianos/metabolismo
5.
Circ Res ; 121(5): 512-524, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28701309

RESUMO

RATIONALE: Thoracic aortic aneurysm (TAA) is a potentially lethal condition, which can affect individuals of all ages. TAA may be complicated by the sudden onset of life-threatening dissection or rupture. The underlying mechanisms leading to TAA formation, particularly in the nonsyndromal idiopathic group of patients, are not well understood. Thus, identification of new genes and targets that are involved in TAA pathogenesis are required to help prevent and reverse the disease phenotype. OBJECTIVE: Here we explore the role of ARHGAP18, a novel Rho GAP expressed by smooth muscle cells (SMCs), in the pathogenesis of TAA. METHODS AND RESULTS: Using human and mouse aortic samples, we report that ARHGAP18 levels were significantly reduced in the SMC layer of aortic aneurysms. Arhgap18 global knockout (Arhgap18-/-) mice exhibited a highly synthetic, proteolytic, and proinflammatory smooth muscle phenotype under basal conditions and when challenged with angiotensin II, developed TAA with increased frequency and severity compared with littermate controls. Chromatin immunoprecipitation studies revealed this phenotype is partly associated with strong enrichment of H3K4me3 and depletion of H3K27me3 at the MMP2 and TNF-α promoters in Arhgap18-deficient SMC. We further show that TAA formation in the Arhgap18-/- mice is associated with loss of Akt activation. The abnormal SMC phenotype observed in the Arhgap18-/- mice can be partially rescued by pharmacological treatment with the mTORC1 inhibitor rapamycin, which reduces the synthetic and proinflammatory phenotype of Arhgap18-deficient SMC. CONCLUSION: We have identified ARHGAP18 as a novel protective gene against TAA formation and define an additional target for the future development of treatments to limit TAA pathogenesis.


Assuntos
Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/prevenção & controle , Proteínas Ativadoras de GTPase/deficiência , Mediadores da Inflamação/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Aneurisma da Aorta Torácica/genética , Proteínas Ativadoras de GTPase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
6.
Blood ; 122(16): 2911-9, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24009229

RESUMO

Cellular junctions are essential to the normal functioning of the endothelium and control angiogenesis, tissue leak, and inflammation. From a screen of micro RNAs (miRNAs) altered in in vitro angiogenesis, we selected a subset predicted to target junctional molecules. MiR-27a was rapidly downregulated upon stimulation of in vitro angiogenesis, and its level of expression is reduced in neovessels in vivo. The downregulation of miR-27a was essential for angiogenesis because ectopic expression of miR-27a blocked capillary tube formation and angiogenesis. MiR-27a targets the junctional, endothelial-specific cadherin, VE-cadherin. Consistent with this, vascular permeability to vascular endothelial growth factor in mice is reduced by administration of a general miR-27 inhibitor. To determine that VE-cadherin was the dominant target of miR-27a function, we used a novel technology with "Blockmirs," inhibitors that bind to the miR-27 binding site in VE-cadherin. The Blockmir CD5-2 demonstrated specificity for VE-cadherin and inhibited vascular leak in vitro and in vivo. Furthermore, CD5-2 reduced edema, increased capillary density, and potently enhanced recovery from ischemic limb injury in mice. The Blockmir technology offers a refinement in the use of miRNAs, especially for therapy. Further, targeting of endothelial junctional molecules by miRNAs has clinical potential, especially in diseases associated with vascular leak.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Animais , Sítios de Ligação , Permeabilidade Capilar , Edema/patologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/patologia , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , Neovascularização Patológica
7.
Geroscience ; 45(6): 3307-3331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37782439

RESUMO

Alzheimer's disease (AD) is an age-related disease, with loss of integrity of the blood-brain barrier (BBB) being an early feature. Cellular senescence is one of the reported nine hallmarks of aging. Here, we show for the first time the presence of senescent cells in the vasculature in AD patients and mouse models of AD. Senescent endothelial cells and pericytes are present in APP/PS1 transgenic mice but not in wild-type littermates at the time of amyloid deposition. In vitro, senescent endothelial cells display altered VE-cadherin expression and loss of cell junction formation and increased permeability. Consistent with this, senescent endothelial cells in APP/PS1 mice are present at areas of vascular leak that have decreased claudin-5 and VE-cadherin expression confirming BBB breakdown. Furthermore, single cell sequencing of endothelial cells from APP/PS1 transgenic mice confirms that adhesion molecule pathways are among the most highly altered pathways in these cells. At the pre-plaque stage, the vasculature shows significant signs of breakdown, with a general loss of VE-cadherin, leakage within the microcirculation, and obvious pericyte perturbation. Although senescent vascular cells were not directly observed at sites of vascular leak, senescent cells were close to the leak area. Thus, we would suggest in AD that there is a progressive induction of senescence in constituents of the neurovascular unit contributing to an increasing loss of vascular integrity. Targeting the vasculature early in AD, either with senolytics or with drugs that improve the integrity of the BBB may be valid therapeutic strategies.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Humanos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/metabolismo , Células Endoteliais , Camundongos Transgênicos , Envelhecimento
8.
Front Immunol ; 14: 1245708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795103

RESUMO

Introduction: Liver cancers exhibit abnormal (leaky) vasculature, hypoxia and an immunosuppressive microenvironment. Normalization of tumor vasculature is an emerging approach to treat many cancers. Blockmir CD5-2 is a novel oligonucleotide-based inhibitor of the miR-27a interaction with VE-Cadherin, the endothelial-specific cadherin. The combination of a vasoactive medication with inhibition of immune checkpoints such as programmed cell death protein 1 (PD1) has been shown to be effective in treating liver cancer in humans. We aimed to study the effect of CD5-2 combined with checkpoint inhibition (using an antibody against PD1) on liver tumor growth, vasculature and immune infiltrate in the diethylnitrosamine (DEN)-induced liver tumor mouse model. Methods: We first analyzed human miR-27a and VE-Cadherin expression data from The Cancer Genome Atlas for hepatocellular carcinoma. CD5-2 and/or anti-PD1 antibody were given to the DEN-treated mice from age 7-months until harvest at age 9-months. Tumor and non-tumor liver tissues were analyzed using histology, immunohistochemistry, immunofluorescence and scanning electron microscopy. Results: Human data showed high miR-27a and low VE-Cadherin were both significantly associated with poorer prognosis. Mice treated with CD5-2 plus anti-PD1 antibody had significantly smaller liver tumors (50% reduction) compared to mice treated with either agent alone, controls, or untreated mice. There was no difference in tumor number. Histologically, tumors in CD5-2-treated mice had less leaky vessels with higher VE-Cadherin expression and less tumor hypoxia compared to non-CD5-2-treated mice. Only tumors in the combination CD5-2 plus anti-PD1 antibody group exhibited a more favorable immune infiltrate (significantly higher CD3+ and CD8+ T cells and lower Ly6G+ neutrophils) compared to tumors from other groups. Discussion: CD5-2 normalized tumor vasculature and reduced hypoxia in DEN-induced liver tumors. CD5-2 plus anti-PD1 antibody reduced liver tumor size possibly by altering the immune infiltrate to a more immunosupportive one.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Humanos , Camundongos , Animais , Lactente , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia , Microambiente Tumoral
9.
Cancers (Basel) ; 13(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917287

RESUMO

The effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment. Modulation of the tumour vasculature by strategies such as vascular normalisation have proven to be efficient in facilitating leucocyte trafficking into tumours and enhancing immunotherapy. In this review, we discuss the underlying mechanisms of abnormal tumour vasculature and its impact on leucocyte trafficking, and potential strategies for overcoming the tumour vascular abnormalities to boost immunotherapy via increasing leucocyte recruitment.

10.
Vasc Biol ; 3(1): R35-R47, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33880430

RESUMO

Cellular senescence is now recognized as one of the hallmarks of aging. Herein, we examine current findings on senescence of the vascular endothelium and its impacts on age-related vascular diseases. Endothelial senescence can result in systemic metabolic changes, implicating senescence in chronic diseases such as diabetes, obesity and atherosclerosis. Senolytics, drugs that eliminate senescent cells, afford new therapeutic strategies for control of these chronic diseases.

11.
Cancer Lett ; 496: 1-15, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991950

RESUMO

Vascular normalisation, the process that reverses the structural and functional abnormalities seen in tumour-associated vessels, is also accompanied by changes in leucocyte trafficking. Our previous studies have shown the normalisation effects of the agent CD5-2 which acts to stabilise VE-Cadherin leading to increased penetration of CD8+ T cells but decreased infiltration of neutrophils (CD11b+Gr1hi) into tumour parenchyma. In the present study, we demonstrate that VE-Cadherin stabilisation through CD5-2 treatment of purified endothelial cells (ECs) results in a similar leucocyte-selective regulation of transmigration, suggesting the existence of an endothelial specific intrinsic mechanism. Further, we show by RNA sequencing (RNA-seq)-based transcriptomic analysis, that treatment of ECs with CD5-2 regulates chemokines known to be involved in leucocyte transmigration, including upregulation of CCL2 and CXCL10 that facilitate CD8+ T cell transmigration. Both in vitro and in vivo mechanistic studies revealed that the increased CCL2 expression was dependent on expression of VE-Cadherin and downstream activation of the AKT/GSK3ß/ß-catenin/TCF4 signalling pathway. CD5-2 treatment also contributed to the reorganisation of the cytoskeleton, inducing reorganisation of stress fibres to circumferential actin, which previously has been described as associated with the stabilisation of the endothelial barrier, and amplification of the transcellular migration of CD8+ T cells. Thus, we propose that promotion of endothelial junctional integrity during vascular normalisation not only inhibits vascular leak but also resets the endothelial dependent regulation of immune cell infiltration.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Caderinas/metabolismo , Endotélio Vascular/patologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/patologia , Oligonucleotídeos/farmacologia , beta Catenina/metabolismo , Animais , Antígenos CD/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/genética , Proliferação de Células , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos , Pessoa de Meia-Idade , Neutrófilos/imunologia , beta Catenina/genética
12.
J Neuroinflammation ; 6: 36, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20003262

RESUMO

The excitotoxin quinolinic acid (QUIN) is synthesized through the kynurenine pathway (KP) by activated monocyte lineage cells. QUIN is likely to play a role in the pathogenesis of several major neuroinflammatory diseases including Alzheimer's disease (AD). The presence of reactive astrocytes, astrogliosis, increased oxidative stress and inflammatory cytokines are important pathological hallmarks of AD. We assessed the stimulatory effects of QUIN at low physiological to high excitotoxic concentrations in comparison with the cytokines commonly associated with AD including IFN-gamma and TNF-alpha on primary human astrocytes. We found that QUIN induces IL-1beta expression, a key mediator in AD pathogenesis, in human astrocytes. We also explored the effect of QUIN on astrocyte morphology and functions. At low concentrations, QUIN treatment induced concomitantly a marked increase in glial fibrillary acid protein levels and reduction in vimentin levels compared to controls; features consistent with astrogliosis. At pathophysiological concentrations QUIN induced a switch between structural protein expressions in a dose dependent manner, increasing VIM and concomitantly decreasing GFAP expression. Glutamine synthetase (GS) activity was used as a functional metabolic test for astrocytes. We found a significant dose-dependent reduction in GS activity following QUIN treatment. All together, this study showed that QUIN is an important factor for astroglial activation, dysregulation and cell death with potential relevance to AD and other neuroinflammatory diseases.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos , Ácido Quinolínico/farmacologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proliferação de Células , Células Cultivadas , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/genética , Vimentina/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1865(11): 165519, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369819

RESUMO

Cerebral cavernous malformations (CCMs) are vascular malformations that cause hemorrhagic stroke. CCMs can arise from loss-of-function mutations in any one of CCM1 (KRIT1), CCM2 or CCM3 (PDCD10). Despite the mutation being in all endothelial cells the CCM lesions develop primarily in the regions with low fluid shear stress (FSS). Here we investigated the role of FSS in the signalling pathways associated with loss of function of CCM genes. We performed transcriptomic analysis on CCM1 or CCM2-silenced endothelial cells subjected to various FSS. The results showed 1382 genes were deregulated under low FSS, whereas only 29 genes were deregulated under high FSS. Key CCM downstream signalling pathways, including increased KLF2/4 expression, actin cytoskeleton reorganization, TGF-ß and toll-like receptor signalling pathways and also oxidative stress pathways, were all highly upregulated but only under low FSS. We also show that the key known phenotypes of CCM lesions such as disrupted endothelial cell junction, increased inflammatory response/oxidative stress and elevated RhoA-ROCK activity, are only exhibited in monolayers of CCM-silenced endothelial cells subjected to low FSS. Our data establishes that shear stress acts as a previously unappreciated but important regulator for CCM gene function and may determine the site of CCM lesion development.


Assuntos
Neoplasias do Sistema Nervoso Central/patologia , Células Endoteliais/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Transdução de Sinais , Animais , Velocidade do Fluxo Sanguíneo , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Retina/metabolismo , Retina/patologia , Transcriptoma , Regulação para Cima
14.
J Am Heart Assoc ; 8(2): e010057, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30630384

RESUMO

Background Vascular endothelial cell (EC) alignment in the direction of flow is an adaptive response that protects against aortic diseases, such as atherosclerosis. The Rho GTP ases are known to regulate this alignment. Herein, we analyze the effect of ARHGAP 18 on the regulation of EC alignment and examine the effect of ARHGAP 18 deficiency on the development of atherosclerosis in mice. Methods and Results We used in vitro analysis of ECs under flow conditions together with apolipoprotein E-/- Arhgap 18-/- double-mutant mice to study the function of ARHGAP 18 in a high-fat diet-induced model of atherosclerosis. Depletion of ARHGAP 18 inhibited the alignment of ECs in the direction of flow and promoted inflammatory phenotype, as evidenced by disrupted junctions and increased expression of nuclear factor-κB and intercellular adhesion molecule-1 and decreased endothelial nitric oxide synthase. Mice with double deletion in ARHGAP 18 and apolipoprotein E and fed a high-fat diet show early onset of atherosclerosis, with lesions developing in atheroprotective regions. Conclusions ARHGAP 18 is a protective gene that maintains EC alignments in the direction of flow. Deletion of ARHGAP 18 led to loss of EC ability to align and promoted atherosclerosis development.


Assuntos
Doenças da Aorta/genética , Velocidade do Fluxo Sanguíneo/fisiologia , Endotélio Vascular/metabolismo , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica , Placa Aterosclerótica/genética , Animais , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Western Blotting , Modelos Animais de Doenças , Endotélio Vascular/patologia , Proteínas Ativadoras de GTPase/biossíntese , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , RNA/genética , Transdução de Sinais
15.
Sci Adv ; 4(11): eaau0731, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30417093

RESUMO

Cerebral cavernous malformation (CCM) is a common cerebrovascular disease that can occur sporadically or be inherited. They are major causes of stroke, cerebral hemorrhage, and neurological deficits in the younger population. Loss-of-function mutations in three genes, CCM1, CCM2, and CCM3, have been identified as the cause of human CCMs. Currently, no drug is available to treat CCM disease. Hyperactive mitogen-activated protein kinase kinase Kinase 3 (MEKK3) kinase signaling as a consequence of loss of CCM genes is an underlying cause of CCM lesion development. Using a U.S. Food and Drug Administration-approved kinase inhibitor library combined with virtual modeling and biochemical and cellular assays, we have identified a clinically approved small compound, ponatinib, that is capable of inhibiting MEKK3 activity and normalizing expression of downstream kruppel-like factor (KLF) target genes. Treatment with this compound in neonatal mouse models of CCM can prevent the formation of new CCM lesions and reduce the growth of already formed lesions. At the ultracellular level, ponatinib can normalize the flattening and disorganization of the endothelium caused by CCM deficiency. Collectively, our study demonstrates ponatinib as a novel compound that may prevent CCM initiation and progression in mouse models through inhibition of MEKK3-KLF signaling.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Deficiência Intelectual/tratamento farmacológico , Proteína KRIT1/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Proteínas dos Microfilamentos/fisiologia , Micrognatismo/tratamento farmacológico , Piridazinas/farmacologia , Costelas/anormalidades , Animais , Células Cultivadas , Progressão da Doença , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Fatores de Transcrição Kruppel-Like/genética , MAP Quinase Quinase Quinase 3/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Micrognatismo/metabolismo , Micrognatismo/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Costelas/metabolismo , Costelas/patologia , Transdução de Sinais , Peixe-Zebra
16.
Neurotox Res ; 12(4): 247-62, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18201952

RESUMO

The kynurenine pathway (KP) and several of its neuroactive products, especially quinolinic acid (QUIN), are considered to be involved in the neuropathogenesis of Alzheimer's disease (AD). There is growing evidence suggesting that astrocytes play a critical role in the regulation of the excitotoxicity and inflammatory processes that occur during the evolution of AD. This review focuses on the role of astrocytes through their relation with the KP to the different features associated with AD including cytokine, chemokine and adhesion molecule production, cytoskeletal changes, astrogliosis, excitotoxicity, apoptosis and neurodegeneration.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Astrócitos/patologia , Astrócitos/fisiologia , Cinurenina/fisiologia , Transdução de Sinais/fisiologia , Animais , Química Encefálica/fisiologia , Eletrofisiologia , Humanos , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia
17.
Cancer Res ; 77(16): 4434-4447, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28655790

RESUMO

T-cell infiltration of solid tumors is associated with improved prognosis and favorable responses to immunotherapy. Mechanisms that enable tumor infiltration of CD8+ T cells have not been defined, nor have drugs that assist this process been discovered. Here we address these issues with a focus on VE-cadherin, a major endothelial cell-specific junctional protein that controls vascular integrity. A decrease in VE-cadherin expression is associated with tumor pathology. We developed an oligonucleotide-based inhibitor (CD5-2), which disrupted the interaction of VE-cadherin with its regulator miR-27a, resulting in increased VE-cadherin expression. Administration of CD5-2 in tumor-bearing mice enhanced expression of VE-cadherin in tumor endothelium, activating TIE-2 and tight junction pathways and normalizing vessel structure and function. CD5-2 administration also enhanced tumor-specific T-cell infiltration and spatially redistributed CD8+ T cells within the tumor parenchyma. Finally, CD5-2 treatment enhanced the efficacy of anti-PD-1 blocking antibody. Our work establishes a role for VE-cadherin in T-cell infiltration in tumors and offers a preclinical proof of concept for CD5-2 as a therapeutic modifier of cancer immunotherapy via effects on the tumor vasculature. Cancer Res; 77(16); 4434-47. ©2017 AACR.


Assuntos
Caderinas/imunologia , Neoplasias do Colo/terapia , Endotélio Vascular/imunologia , Imunoterapia/métodos , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/terapia , Linfócitos T/imunologia , Animais , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanoma Experimental/imunologia , Camundongos , Terapia de Alvo Molecular
18.
Small GTPases ; 5(3): 1-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25425145

RESUMO

The formation of the vascular network requires a tightly controlled balance of pro-angiogenic and stabilizing signals. Perturbation of this balance can result in dysregulated blood vessel morphogenesis and drive pathologies including cancer. Here, we have identified a novel gene, ARHGAP18, as an endogenous negative regulator of angiogenesis, limiting pro-angiogenic signaling and promoting vascular stability. Loss of ARHGAP18 promotes EC hypersprouting during zebrafish and murine retinal vessel development and enhances tumor vascularization and growth. Endogenous ARHGAP18 acts specifically on RhoC and relocalizes to the angiogenic and destabilized EC junctions in a ROCK dependent manner, where it is important in reaffirming stable EC junctions and suppressing tip cell behavior, at least partially through regulation of tip cell genes, Dll4, Flk-1 and Flt-4. These findings highlight ARHGAP18 as a specific RhoGAP to fine tune vascular morphogenesis, limiting tip cell formation and promoting junctional integrity to stabilize the angiogenic architecture.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Junções Intercelulares/metabolismo , Melanoma Experimental/irrigação sanguínea , Neovascularização Fisiológica , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Proteínas Ativadoras de GTPase/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Retina/citologia , Retina/metabolismo , Retina/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
19.
PLoS One ; 5(11): e14123, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21152063

RESUMO

Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS). However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs) in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN). Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH) activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B) are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.


Assuntos
Astrócitos/metabolismo , Perfilação da Expressão Gênica , Receptores de N-Metil-D-Aspartato/genética , Adulto , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Cálcio/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Maleato de Dizocilpina/farmacologia , Ácido Glutâmico/farmacologia , Humanos , Imuno-Histoquímica , L-Lactato Desidrogenase/metabolismo , Memantina/farmacologia , Microscopia Confocal , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ácido Quinolínico/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA