Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-23496548

RESUMO

Some small birds typically clap their wings ventrally, particularly during hovering. To investigate this phenomenon, we analyzed the kinematic motion and wake flow field of two passerine species that hover with the same flapping frequency. For these two birds, the ventral clap is classified as direct and cupping. Japanese White-eyes undertake a direct clap via their hand wings, whereas Gouldian Finches undertake a cupping clap with one wing overlaying the other. As a result of their morphological limitation, birds of both greater size and wing span cup their wings to increase the wing speed during a ventral clap because of the larger wing loading. This morphological limitation leads also to a structural discrepancy of the wake flow fields between these two passerine species. At the instant of clapping, the direct clap induces a downward air velocity 1.68 times and generates a weight-normalized lift force 1.14 times that for the cupping clap. The direct clap produces a small upward jet and a pair of counter-rotating vortices, both of which abate the transient lift at the instant of clapping, but they are not engendered by the cupping clap. The aerodynamic mechanisms generated with a ventral clap help the small birds to avoid abrupt body swinging at the instant of clapping so as to maintain their visual stability during hovering.


Assuntos
Tentilhões/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Asas de Animais/fisiologia , Animais , Simulação por Computador
2.
J R Soc Interface ; 9(72): 1674-84, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22258552

RESUMO

We demonstrate experimentally that a passerine exploits tail spreading to intercept the downward flow induced by its wings to facilitate the recovery of its posture. The periodic spreading of its tail by the White-eye bird exhibits a phase correlation with both wingstroke motion and body oscillation during hovering flight. During a downstroke, a White-eye's body undergoes a remarkable pitch-down motion, with the tail undergoing an upward swing. This pitch-down motion becomes appropriately suppressed at the end of the downstroke; the bird's body posture then recovers gradually to its original status. Employing digital particle-image velocimetry, we show that the strong downward flow induced by downstroking the wings serves as an external jet flow impinging upon the tail, providing a depressing force on the tail to counteract the pitch-down motion of the bird's body. Spreading of the tail enhances a rapid recovery of the body posture because increased forces are experienced. The maximum force experienced by a spread tail is approximately 2.6 times that of a non-spread tail.


Assuntos
Postura/fisiologia , Pardais/fisiologia , Cauda/fisiologia , Animais , Asas de Animais/fisiologia
3.
Lab Chip ; 12(5): 923-31, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22240904

RESUMO

We propose a novel technique that allows oligonucleotides with specific end-modification within a plug in a plug-based microfluidic device to undergo a locally enhanced concentration at the rear of the plug as the plug moves downstream. DNA was enriched and detected in situ upon exploiting a combined effect underlain by an entropic force induced through fluid shear (i.e. a hydrodynamic-repellent effect) and the interfacial adsorption (aqueous/oil interface) attributed to affinity. Flow fields within a plug were visualized quantitatively using micro-particle image velocimetry (micro-PIV); the distribution of the fluid shear strain rate explains how the hydrodynamic-repellent effect engenders a dumbbell-like region with an increased concentration of DNA. The concentration of FAM (6-carboxy-fluorescein)-labeled DNA (FC-DNA) and of TAMRA (tetramethyl-6-carboxyrhodamine)-labeled DNA (TC-DNA), respectively, and the hybridization of probe DNA (modified with FAM) with target DNA (modified with TAMRA) were investigated in devices; a confocal fluorescence microscope (CFM) was utilized to monitor the processes and to resolve the corresponding 2D patterns and 3D reconstruction of the DNA distribution in a plug. TC-DNA, but not FC-DNA, concentrating within a plug was affected by the combined effect so as to achieve a concentration factor (C(r)) twice that of FC-DNA because of the lipophilicity of TAMRA. Using fluorescence resonance-energy transfer (FRET), we characterized the hybridization of the DNA in a plug; the detection limit of a system, improved by virtue of the proposed technique (the locally enhanced concentration), for DNA detection was estimated to be 20-50 nM. This technique enables DNA to concentrate locally in a nL-pL free-solution plug, the locally enhanced concentration to profit the hybridization efficiency and the detection of DNA, prospectively serving as a versatile means to accomplish a rapid DNA detection in a small volume for a Lab-on-a-Chip (LOC) system.


Assuntos
Técnicas Analíticas Microfluídicas , Oligonucleotídeos/química , Animais , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 1): 012901, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867240

RESUMO

We provide physical insight into how a small hovering bird attains stabilized vision during downstroke. A passerine generates a lift force greater than its body weight during downstroke, leading to a substantial swing of the bird body, but the bird's eyes are nearly stable. Employing digital particle-image velocimetry, we demonstrate that a hovering passerine generates a lift force acting dorsal to the center of mass, concurrently resulting in rotational and translational displacements of the bird's body. The most notable finding is that the rotational and translational displacements at the bird's eyes almost cancel each other; the displacement of the eye is ~8% that of the trailing tip of the tail. This aerodynamic trick enables a bird to attain stabilized vision beneficial for the inspection of the environment.


Assuntos
Biofísica/métodos , Aves/fisiologia , Voo Animal/fisiologia , Visão Ocular , Asas de Animais/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Luz , Modelos Biológicos , Movimento (Física) , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA