Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 173(3): 954-960, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34237161

RESUMO

Under natural conditions, plants experience external mechanical stresses such as wind and touch that impact their growth. A remarkable feature of this mechanically induced growth response is that it may occur at a distance from the stimulation site, suggesting the existence of a signal propagating through the plant. In this study, we investigated the electrical response of poplar trees to a transient controlled bending stimulation of the stem that mimics the mechanical effect of wind. Stem bending was found to cause an electrical response that we called "gradual" potential, similar in shape to an action potential. However, this signal can be distinguished from the well-known plant action potential by its propagation up to 20 cm along the stem and its strong dumping in velocity and amplitude. Two hypotheses regarding the mode of propagation of the "gradual" potential are discussed.


Assuntos
Populus
2.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681698

RESUMO

Over the past three decades, how plants sense and respond to mechanical stress has become a flourishing field of research. The pivotal role of mechanosensing in organogenesis and acclimation was demonstrated in various plants, and links are emerging between gene regulatory networks and physical forces exerted on tissues. However, how plant cells convert physical signals into chemical signals remains unclear. Numerous studies have focused on the role played by mechanosensitive (MS) calcium ion channels MCA, Piezo and OSCA. To complement these data, we combined data mining and visualization approaches to compare the tissue-specific expression of these genes, taking advantage of recent single-cell RNA-sequencing data obtained in the root apex and the stem of Arabidopsis and the Populus stem. These analyses raise questions about the relationships between the localization of MS channels and the localization of stress and responses. Such tissue-specific expression studies could help to elucidate the functions of MS channels. Finally, we stress the need for a better understanding of such mechanisms in trees, which are facing mechanical challenges of much higher magnitudes and over much longer time scales than herbaceous plants, and we mention practical applications of plant responsiveness to mechanical stress in agriculture and forestry.


Assuntos
Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Arabidopsis/crescimento & desenvolvimento , Canais de Cálcio/classificação , Mecanotransdução Celular/genética , Filogenia , Proteínas de Plantas/classificação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Populus/crescimento & desenvolvimento , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA