Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916559

RESUMO

The filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostly QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis.IMPORTANCETrichoderma reesei is a filamentous fungus with a high potential for secretion of plant cell wall-degrading enzymes. We sequenced the genome of the fully fertile field isolate CBS999.97 and analyzed its gene regulation characteristics in comparison with the commonly used laboratory wild-type strain QM6a, which is not female fertile. Additionally, we also evaluated fully fertile strains with genotypes very close to that of QM6a in order to distinguish between strain-specific and fertility-specific characteristics. We found that QM6a and CBS999.97 clearly differ in their growth patterns on different carbon sources, CAZyme gene regulation, and secondary metabolism. Importantly, we found altered regulation of 90 genes associated with female fertility, including CAZyme genes and transporter genes, but only minor mating type-dependent differences. Hence, when using sexual crossing in research and for strain improvement, it is important to consider female fertile and female sterile strains for comparison with QM6a and to achieve optimal performance.


Assuntos
Celulase/genética , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Trichoderma/enzimologia , Celulase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento , Proteínas de Membrana Transportadoras/metabolismo , Transcrição Gênica , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento
2.
Mol Microbiol ; 96(6): 1103-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25757597

RESUMO

Sexual development in the filamentous model ascomycete Trichoderma reesei (syn. Hypocrea jecorina) was described only a few years ago. In this study, we show a novel role for VELVET in fungi, which links light response, development and secondary metabolism. Vel1 is required for mating in darkness, normal growth and conidiation. In light, vel1 was dispensable for male fertility but essential for female fertility in both mating types. VEL1 impacted regulation of the pheromone system (hpr1, hpr2, hpp1, ppg1) in a mating type-dependent manner and depending on the mating partner of a given strain. These partner effects only occurred for hpp1 and hpr2, the pheromone precursor and receptor genes associated with the MAT1-2 mating type and for the mating type gene mat1-2-1. Analysis of secondary metabolite patterns secreted by wild type and mutants under asexual and sexual conditions revealed that even in the wild type, the patterns change upon encounter of a mating partner, with again distinct differences for wild type and vel1 mutants. Hence, T. reesei applies a language of pheromones and secondary metabolites to communicate with mating partners and that this communication is at least in part mediated by VEL1.


Assuntos
Genes Fúngicos Tipo Acasalamento , Trichoderma/fisiologia , DNA Fúngico/genética , Escuridão , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Luz , Feromônios/metabolismo , Trichoderma/genética
3.
BMC Genomics ; 15: 425, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24893562

RESUMO

BACKGROUND: Crosstalk between the signalling pathways responding to light-dark cycles and those triggering the adaptation of metabolism to the environment is known to occur in various organisms. This interrelationship of light response and nutrient sigalling is crucial for health and fitness. The tropical ascomycete Trichoderma reesei (syn. Hypocrea jecorina) represents one of the most efficient plant cell wall degraders. Regulation of the enzymes required for this process is affected by nutritional signals as well as other environmental signals including light. Therefore we aimed to elucidate the interrelationship between nutrient and light signaling and how the light signal is transmitted to downstream pathways. RESULTS: We found that the targets of the light regulatory protein ENV1 in light show considerable overlap with those of the heterotrimeric G-protein components PhLP1, GNB1 and GNG1. Detailed investigation of a regulatory interrelationship of these components with ENV1 under conditions of early and late light response indicated a transcriptional mutual regulation between PhLP1 and ENV1, which appears to dampen nutrient signalling during early light response, presumably to free resources for protective measures prior to adaptation of metabolism to light. Investigating the downstream part of the cascade we found support for the hypothesis that ENV1 is necessary for cAMP mediated regulation of a considerable part of the core functions of the output pathway of this cascade, including regulation of glycoside hydrolase genes and those involved in nitrogen, sulphur and amino acid metabolism. CONCLUSIONS: ENV1 and PhLP1 are mutual regulators connecting light signaling with nutrient signaling, with ENV1 triggering the output pathway by influencing cAMP levels.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Luz , Transdução de Sinais , Trichoderma/genética , Trichoderma/metabolismo , Adaptação Biológica , Análise por Conglomerados , AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Mutação , Fotoperíodo , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Transcrição Gênica
4.
BMC Genomics ; 14: 657, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24070552

RESUMO

BACKGROUND: The tropical ascomycete Trichoderma reesei (Hypocrea jecorina) represents one of the most efficient plant cell wall degraders. Regulation of the enzymes required for this process is affected by nutritional signals as well as other environmental signals including light. RESULTS: Our transcriptome analysis of strains lacking the photoreceptors BLR1 and BLR2 as well as ENV1 revealed a considerable increase in the number of genes showing significantly different transcript levels in light and darkness compared to wild-type. We show that members of all glycoside hydrolase families can be subject to light dependent regulation, hence confirming nutrient utilization including plant cell wall degradation as a major output pathway of light signalling. In contrast to N. crassa, photoreceptor mediated regulation of carbon metabolism in T. reesei occurs primarily by BLR1 and BLR2 via their positive effect on induction of env1 transcription, rather than by a presumed negative effect of ENV1 on the function of the BLR complex. Nevertheless, genes consistently regulated by photoreceptors in N. crassa and T. reesei are significantly enriched in carbon metabolic functions. Hence, different regulatory mechanisms are operative in these two fungi, while the light dependent regulation of plant cell wall degradation appears to be conserved.Analysis of growth on different carbon sources revealed that the oxidoreductive D-galactose and pentose catabolism is influenced by light and ENV1. Transcriptional regulation of the target enzymes in these pathways is enhanced by light and influenced by ENV1, BLR1 and/or BLR2. Additionally we detected an ENV1-regulated genomic cluster of 9 genes including the D-mannitol dehydrogenase gene lxr1, with two genes of this cluster showing consistent regulation in N. crassa. CONCLUSIONS: We show that one major output pathway of light signalling in Trichoderma reesei is regulation of glycoside hydrolase genes and the degradation of hemicellulose building blocks. Targets of ENV1 and BLR1/BLR2 are for the most part distinct and indicate individual functions for ENV1 and the BLR complex besides their postulated regulatory interrelationship.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos da radiação , Trichoderma/fisiologia , Metabolismo dos Carboidratos/efeitos da radiação , Celulase/genética , Celulase/metabolismo , Indução Enzimática/efeitos da radiação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Luz , Família Multigênica , Neurospora crassa/fisiologia , Neurospora crassa/efeitos da radiação , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Trichoderma/efeitos da radiação
5.
Eukaryot Cell ; 11(7): 885-95, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22581525

RESUMO

Light is one crucial environmental signal which can determine whether a fungus reproduces asexually or initiates sexual development. Mating in the ascomycete Hypocrea jecorina (anamorph Trichoderma reesei) occurs preferentially in light. We therefore investigated the relevance of the light response machinery for sexual development in H. jecorina. We found that the photoreceptors BLR1 and BLR2 and the light-regulatory protein ENV1 have no effect on male fertility, while ENV1 is essential for female fertility. BLR1 and BLR2 were found to impact fruiting body formation although they are not essential for mating. Quantitative reverse transcription-PCR (qRT-PCR) analyses revealed that BLR1, BLR2, and ENV1 negatively regulate transcript levels of both pheromone receptors as well as peptide pheromone precursors in light but not in darkness and in a mating type-dependent manner. The effect of BLR1 and BLR2 on regulation of pheromone precursor and receptor genes is less severe than that of ENV1 as strains lacking env1 show 100-fold (for ppg1) to more than 100,000-fold (for hpp1) increased transcript levels of pheromone precursor genes as well as more than 20-fold increased levels of hpr1, the pheromone receptor receiving the HPP1 signal in a MAT1-1 strain. ENV1 likely integrates additional signals besides light, and our results indicate that its function is partially mediated via regulation of mat1-2-1. We conclude that ENV1 is essential for balancing the levels of genes regulated in a mating-type-dependent manner, which contributes to determination of sexual identity and fruiting body formation.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Trichoderma/fisiologia , Proteínas Fúngicas/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Genes Fúngicos Tipo Acasalamento/efeitos da radiação , Luz , Reprodução/efeitos da radiação , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento , Trichoderma/efeitos da radiação
6.
BMC Genomics ; 13: 127, 2012 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-22462823

RESUMO

BACKGROUND: Light represents an important environmental cue, which exerts considerable influence on the metabolism of fungi. Studies with the biotechnological fungal workhorse Trichoderma reesei (Hypocrea jecorina) have revealed an interconnection between transcriptional regulation of cellulolytic enzymes and the light response. Neurospora crassa has been used as a model organism to study light and circadian rhythm biology. We therefore investigated whether light also regulates transcriptional regulation of cellulolytic enzymes in N. crassa. RESULTS: We show that the N. crassa photoreceptor genes wc-1, wc-2 and vvd are involved in regulation of cellulase gene expression, indicating that this phenomenon is conserved among filamentous fungi. The negative effect of VVD on production of cellulolytic enzymes is thereby accomplished by its role in photoadaptation and hence its function in White collar complex (WCC) formation. In contrast, the induction of vvd expression by the WCC does not seem to be crucial in this process. Additionally, we found that WC-1 and WC-2 not only act as a complex, but also have individual functions upon growth on cellulose. CONCLUSIONS: Genome wide transcriptome analysis of photoreceptor mutants and evaluation of results by analysis of mutant strains identified several candidate genes likely to play a role in light modulated cellulase gene expression. Genes with functions in amino acid metabolism, glycogen metabolism, energy supply and protein folding are enriched among genes with decreased expression levels in the wc-1 and wc-2 mutants. The ability to properly respond to amino acid starvation, i. e. up-regulation of the cross pathway control protein cpc-1, was found to be beneficial for cellulase gene expression. Our results further suggest a contribution of oxidative depolymerization of cellulose to plant cell wall degradation in N. crassa.


Assuntos
Celulase/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Luz , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fotorreceptores Microbianos/metabolismo , Análise por Conglomerados , Proteínas Fúngicas/genética , Deleção de Genes , Genes Fúngicos/genética , Neurospora crassa/enzimologia , Neurospora crassa/efeitos da radiação , Fotorreceptores Microbianos/genética , Transcriptoma/efeitos da radiação
7.
Fungal Genet Biol ; 49(10): 814-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22884620

RESUMO

Discovery of sexual development in the ascomycete Trichoderma reesei (Hypocrea jecorina) as well as detection of a novel class of peptide pheromone precursors in this fungus indicates promising insights into its physiology and lifestyle. Here we investigated the role of the two pheromone receptors HPR1 and HPR2 in the H. jecorina pheromone-system. We found that these pheromone receptors show an unexpectedly high genetic variability among H. jecorina strains. HPR1 and HPR2 confer female fertility in their cognate mating types (MAT1-1 or MAT1-2, respectively) and mediate induction of fruiting body development. One compatible pheromone precursor-pheromone receptor pair (hpr1-hpp1 or hpr2-ppg1) in mating partners was sufficient for sexual development. Additionally, pheromone receptors were essential for ascospore development, hence indicating their involvement in post-fertilisation events. Neither pheromone precursor genes nor pheromone receptor genes of H. jecorina were transcribed in a strictly mating type dependent manner, but showed enhanced expression levels in the cognate mating type. In the presence of a mating partner under conditions favoring sexual development, transcript levels of pheromone precursors were significantly increased, while those of pheromone receptor genes do not show this trend. In the female sterile T. reesei strain QM6a, transcriptional responses of pheromone precursor and pheromone receptor genes to a mating partner were clearly altered compared to the female fertile wild-type strain CBS999.97. Consequently, a delayed and inappropriate response to the mating partner may be one aspect causing female sterility in QM6a.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Hypocrea/fisiologia , Receptores de Feromônios/genética , Sequência de Aminoácidos , DNA Fúngico/genética , Carpóforos/citologia , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Carpóforos/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Fúngicos Tipo Acasalamento , Variação Genética , Hypocrea/citologia , Hypocrea/genética , Hypocrea/crescimento & desenvolvimento , Dados de Sequência Molecular , Feromônios/metabolismo , Receptores de Feromônios/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Esporos Fúngicos/citologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia
8.
Appl Environ Microbiol ; 78(7): 2168-78, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22286997

RESUMO

The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process.


Assuntos
Adenilil Ciclases/metabolismo , Celulase/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Luz , Trichoderma/enzimologia , Adenilil Ciclases/genética , Celulase/genética , Meios de Cultura , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Escuridão , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Lactose/metabolismo , Mutação , Transdução de Sinais , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento , Trichoderma/fisiologia
9.
BMC Genomics ; 12: 613, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22182583

RESUMO

BACKGROUND: In the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina) transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression. RESULTS: As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the T. reesei class I phosducin-like protein gene phlp1 and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in T. reesei. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency.Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δphlp1. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δphlp1. The lack of GNB1 drastically diminished ascospore discharge in T. reesei. CONCLUSIONS: The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of T. reesei, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light responsiveness, glycoside hydrolase gene transcription and sexual development.


Assuntos
Proteínas do Olho/fisiologia , Reguladores de Proteínas de Ligação ao GTP/fisiologia , Glicosídeo Hidrolases/metabolismo , Luz , Fosfoproteínas/fisiologia , Trichoderma/metabolismo , Transcrição Gênica , Trichoderma/enzimologia , Trichoderma/genética
10.
Mol Microbiol ; 77(6): 1483-501, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20735770

RESUMO

Recently, sexual development in the heterothallic ascomycete Trichoderma reesei (anamorph of Hypocrea jecorina) has been achieved and thus initiated attempts to elucidate regulation and determinants of this process. While the α-type pheromone of this fungus fits the consensus known from other fungi, the assumed a-type peptide pheromone precursor shows remarkably unusual characteristics: it comprises three copies of the motif (LI)GC(TS)VM thus constituting a CAAX domain at the C-terminus and two Kex2-protease sites. This structure shares characteristics of both a- and α-type peptide pheromone precursors. Presence of hybrid-type peptide pheromone precursor 1 (hpp1) is essential for male fertility, thus indicating its functionality as a peptide pheromone precursor, while its phosphorylation site is not relevant for this process. However, sexual development in a female fertile background is not perturbed in the absence of hpp1, which rules out a higher order function in this process. Open reading frames encoding proteins with similar characteristics to HPP1 were also found in Fusarium spp., of which Fusarium solani still retains a putative a-factor-like protein, but so far in no other fungal genome available. We therefore propose the novel class of h-type (hybrid) peptide pheromone precursors with H. jecorina HPP1 as the first member of this class.


Assuntos
Proteínas Fúngicas/química , Feromônios/química , Precursores de Proteínas/química , Trichoderma/química , Biologia Computacional , DNA Fúngico/genética , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Deleção de Genes , Biblioteca Gênica , Teste de Complementação Genética , Feromônios/classificação , Feromônios/genética , Precursores de Proteínas/classificação , Trichoderma/genética
11.
Fungal Genet Biol ; 48(6): 631-40, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21220037

RESUMO

Sensing of environmental signals is often mediated by G-protein coupled receptors and their cognate heterotrimeric G-proteins. In Trichoderma reesei (Hypocrea jecorina) the signals transmitted via the G-protein alpha subunits GNA1 and GNA3 cause considerable modulation of cellulase transcript levels and the extent of this adjustment is dependent on the light status. We therefore intended to elucidate the underlying mechanism connecting light response and heterotrimeric G-protein signaling. Analysis of double mutant strains showed that constitutive activation of GNA1 or GNA3 in the absence of the PAS/LOV domain protein ENVOY (ENV1) leads to the phenotype of constitutive G-alpha activation in darkness. In light, however the deletion-phenotype of Δenv1 was observed with respect to growth, conidiation and cellulase gene transcription. Additionally deletion of env1 causes decreased intracellular cAMP accumulation, even upon constitutive activation of GNA1 or GNA3. While supplementation of cAMP caused an even more severe growth phenotype of all strains lacking env1 in light, addition of the phosphodiesterase inhibitor caffeine rescued the growth phenotype of these strains. ENV1 is consequently suggested to connect the light response pathway with nutrient signaling by the heterotrimeric G-protein cascade by adjusting transcript levels of gna1 and gna3 and action on cAMP levels - presumably through inhibition of a phosphodiesterase.


Assuntos
AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Transdução de Sinal Luminoso , Trichoderma/metabolismo , Proteínas Fúngicas/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Luz , Trichoderma/genética , Trichoderma/efeitos da radiação
12.
Fungal Genet Biol ; 47(5): 468-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20144726

RESUMO

In Trichoderma reesei light stimulates transcription of cellulase genes and this regulation has been found to occur, at least in part, through the protein ENVOY. Here we analyzed the role of the BLR photoreceptor complex (BLR1/BLR2) in photoconidiation and the regulation of gene expression. Both responses were dependent on both BLR proteins. Analyses of Deltablr1, Deltablr2 and Deltaenv1 mutants showed that the BLR proteins regulate growth under illumination. Analysis of env1 mutant strains indicated that ENVOY allows the fungus to tolerate continuous exposure to light, damped the capacity of Trichoderma to perceive changes in light intensity, and suggested that it participates in a negative regulatory feedback. Its activity as repressor establishes a period of insensitivity to a second light treatment. Interestingly, the stimulation of cellulase gene expression by light was also modulated by both blr1 and blr2, indicating a key role of the BLR proteins in this pathway.


Assuntos
Celulase/genética , Proteínas Fúngicas/genética , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Fotorreceptores Microbianos/metabolismo , Trichoderma/crescimento & desenvolvimento , Trichoderma/efeitos da radiação , Celulase/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Luz , Fotorreceptores Microbianos/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Esporos Fúngicos/efeitos da radiação , Trichoderma/genética , Trichoderma/metabolismo
13.
Appl Microbiol Biotechnol ; 85(5): 1259-77, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19915832

RESUMO

Light represents a major carrier of information in nature. The molecular machineries translating its electromagnetic energy (photons) into the chemical language of cells transmit vital signals for adjustment of virtually every living organism to its habitat. Fungi react to illumination in various ways, and we found that they initiate considerable adaptations in their metabolic pathways upon growth in light or after perception of a light pulse. Alterations in response to light have predominantly been observed in carotenoid metabolism, polysaccharide and carbohydrate metabolism, fatty acid metabolism, nucleotide and nucleoside metabolism, and in regulation of production of secondary metabolites. Transcription of genes is initiated within minutes, abundance and activity of metabolic enzymes are adjusted, and subsequently, levels of metabolites are altered to cope with the harmful effects of light or to prepare for reproduction, which is dependent on light in many cases. This review aims to give an overview on metabolic pathways impacted by light and to illustrate the physiological significance of light for fungi. We provide a basis for assessment whether a given metabolic pathway might be subject to regulation by light and how these properties can be exploited for improvement of biotechnological processes.


Assuntos
Fungos/metabolismo , Transdução de Sinal Luminoso , Luz , Redes e Vias Metabólicas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Microbiologia Industrial , Redes e Vias Metabólicas/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-31528353

RESUMO

BACKGROUND: Trichoderma reesei represents a model system for investigation of plant cell wall degradation and its connection to light response. The cyclic adenosine monophosphate pathway (cAMP pathway) plays an important role in both physiological outputs, being crucial for regulation of photoreceptor function as well as for cellulase regulation on different carbon sources. Phosphorylation of photoreceptors and of the carbon catabolite repressor CRE1 was shown in ascomycetes, indicating a relevance of protein kinase A in regulation of the target genes of these transcription factors as well as an impact on regulation of induction specific genes. Moreover, the cAMP pathway impacts growth and development. RESULTS: Here, we investigated gene regulation by the catalytic subunit of protein kinase A (PKAc1) upon growth on cellulose. We found distinct gene sets for regulation upon growth in light and darkness with an overlap of only 13 genes. PKAc1 regulates metabolic genes as well as transport and defense functions. The overlap of gene regulation by PKAc1 with the genes representing the cAMP dependent regulatory output of the photoreceptor ENV1 indicates an involvement of PKA in this pathway, which counteracts its effects by contrasting regulation. Moreover, we found considerable overlap with the gene sets regulated under cellulase inducing conditions and by the carbon catabolite repressor CRE1. Our analysis also showed that PKAc1 regulates the genes of the SOR cluster associated with the biosynthesis of sorbicillinoids. The homologue of gin4, encoding a CAMK type kinase, which is regulated by PKAc1, CRE1 and YPR2 showed a moderate impact on trichodimerol production. We isolated trichodimerol as representative sorbicillin compound and established a method for its quantification in large sample sets using high performance thin layer chromatography (HPTLC), which can be broadly applied for secondary metabolite screening of mutants or different growth conditions. Due to the high expression levels of the SOR cluster under conditions of sexual development we crosschecked the relevance of PKAc1 under these conditions. We could show that PKAc1 impacts biosynthesis of trichodimerol in axenic growth and upon mating. CONCLUSIONS: We conclude that PKAc1 is involved in light dependent regulation of plant cell wall degradation, including carbon catabolite repression as well as secondary metabolism and development in T. reesei.

15.
Artigo em Inglês | MEDLINE | ID: mdl-29785273

RESUMO

BACKGROUND: Trichoderma reesei is one of the most frequently used filamentous fungi in industry for production of homologous and heterologous proteins. The ability to use sexual crossing in this fungus was discovered several years ago and opens up new perspectives for industrial strain improvement and investigation of gene regulation. RESULTS: Here we investigated the female sterile strain QM6a in comparison to the fertile isolate CBS999.97 and backcrossed derivatives of QM6a, which have regained fertility (FF1 and FF2 strains) in both mating types under conditions of sexual development. We found considerable differences in gene regulation between strains with the CBS999.97 genetic background and the QM6a background. Regulation patterns of QM6a largely clustered with the backcrossed FF1 and FF2 strains. Differential regulation between QM6a and FF1/FF2 as well as clustering of QM6a patterns with those of CBS999.97 strains was also observed. Consistent mating type dependent regulation was limited to mating type genes and those involved in pheromone response, but included also nta1 encoding a putative N-terminal amidase previously not associated with development. Comparison of female sterile QM6a with female fertile strains showed differential expression in genes encoding several transcription factors, metabolic genes and genes involved in secondary metabolism. CONCLUSIONS: Evaluation of the functions of genes specifically regulated under conditions of sexual development and of genes with highest levels of transcripts under these conditions indicated a relevance of secondary metabolism for sexual development in T. reesei. Among others, the biosynthetic genes of the recently characterized SOR cluster are in this gene group. However, these genes are not essential for sexual development, but rather have a function in protection and defence against competitors during reproduction.

16.
mSphere ; 2(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28497120

RESUMO

In fungi, most metabolic processes are subject to regulation by light. Trichoderma reesei is adapted to degradation of plant cell walls and regulates production of the required enzymes in a manner dependent on the nutrient source and the light status. Here we investigated the interrelated relevance of two regulation levels of the transcriptome of T. reesei: light regulation and carbon source-dependent control. We show that the carbon source (cellulose, lactose, sophorose, glucose, or glycerol) is the major source of variation, with light having a modulating effect on transcript regulation. A total of 907 genes were regulated under cellulase-inducing conditions in light, and 947 genes were regulated in darkness, with 530 genes overlapping (1,324 in total). Only 218 of the 1,324 induction-specific genes were independent of light and not regulated by the BLR1, BLR2, and ENV1 photoreceptors. Analysis of the genomic distribution of genes regulated by light upon growth on cellulose revealed considerable overlap of light-regulated clusters with induction-specific clusters and carbohydrate-active enzyme (CAZyme) clusters. Further, we found evidence for the operation of a sensing mechanism for solid cellulosic substrates, with regulation of genes such as swo1, cip1, and cip2 or of genes encoding hydrophobins which is related to the cyclic AMP (cAMP)-dependent regulatory output of ENV1. We identified class XIII G-protein-coupled receptors (GPCRs) CSG1 and CSG2 in T. reesei as putative cellulose/glucose-sensing GPCRs. Our data indicate that the cellulase regulation pathway is bipartite, comprising a section corresponding to transcriptional regulation and one corresponding to posttranscriptional regulation, with the two connected by the function of CSG1. IMPORTANCE In fungi, most metabolic processes are subject to regulation by light. For Trichoderma reesei, light-dependent regulation of cellulase gene expression is specifically shown. Therefore, we intended to unravel the relationship between regulation of enzymes by the carbon source and regulation of enzymes by light. Our two-dimensional analysis included inducing and repressing carbon sources which we used to compare light-specific regulation to dark-specific regulation and to rule out effects specific for a single carbon source. We found close connections with respect to gene regulation as well as significant differences in dealing with carbon in the environment in light and darkness. Moreover, our analyses showed an intricate regulation mechanism for substrate degradation potentially involving surface sensing and provide a basis for knowledge-based screening for strain improvement.

17.
Microbiol Mol Biol Rev ; 80(1): 205-327, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26864432

RESUMO

The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Processamento de Proteína Pós-Traducional , Trichoderma/genética , Montagem e Desmontagem da Cromatina , Proteínas Fúngicas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Redes e Vias Metabólicas/genética , Filogenia , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trichoderma/classificação , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA