Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 141(12): 1469-1473, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36603190

RESUMO

A redox autoinhibitory mechanism has previously been proposed, in which the reduced state of the vicinal disulfide bond in the von Willebrand factor (VWF) A2 domain allows A2 to bind to A1 and inhibit platelet adhesion to the A1 domain. The VWF A1A2A3 tridomain was expressed with and without the vicinal disulfide in A2 (C1669S/C1670S) via the atomic replacement of sulfur for oxygen to test the relevance of the vicinal disulfide to the physiological platelet function of VWF under shear flow. A comparative study of the shear-dependent platelet translocation dynamics on these tridomain variants reveals that the reduction of the vicinal disulfide moderately increases the platelet-capturing function of A1, an observation counter to the proposed hypothesis. Surface plasmon resonance spectroscopy confirms that C1669S/C1670S slightly increases the affinity of A1A2A3 binding to glycoprotein Ibα (GPIbα). Differential scanning calorimetry and hydrogen-deuterium exchange mass spectrometry demonstrate that reduction of the vicinal disulfide destabilizes the A2 domain, which consequently disrupts interactions between the A1, A2, and A3 domains and enhances the conformational dynamics of A1-domain secondary structures known to regulate the strength of platelet adhesion to VWF. This study clarifies that the reduced state of the A2 vicinal disulfide is not inhibitory but rather slightly activating.


Assuntos
Dissulfetos , Fator de von Willebrand , Fator de von Willebrand/metabolismo , Dissulfetos/análise , Ligação Proteica , Plaquetas/metabolismo , Estrutura Secundária de Proteína , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34551979

RESUMO

Reduced succinate dehydrogenase (SDH) activity resulting in adverse succinate accumulation was previously considered relevant only in 0.05 to 0.5% of kidney cancers associated with germline SDH mutations. Here, we sought to examine a broader role for SDH loss in kidney cancer pathogenesis/progression. We report that underexpression of SDH subunits resulting in accumulation of oncogenic succinate is a common feature in clear cell renal cell carcinoma (ccRCC) (∼80% of all kidney cancers), with a marked adverse impact on survival in ccRCC patients (n = 516). We show that SDH down-regulation is a critical brake in the TCA cycle during ccRCC pathogenesis and progression. In exploring mechanisms of SDH down-regulation in ccRCC, we report that Von Hippel-Lindau loss-induced hypoxia-inducible factor-dependent up-regulation of miR-210 causes direct inhibition of the SDHD transcript. Moreover, shallow deletion of SDHB occurs in ∼20% of ccRCC. We then demonstrate that SDH loss-induced succinate accumulation contributes to adverse loss of 5-hydroxymethylcytosine, gain of 5-methylcytosine, and enhanced invasiveness in ccRCC via inhibition of ten-eleven translocation (TET)-2 activity. Intriguingly, binding affinity between the catalytic domain of recombinant TET-2 and succinate was found to be very low, suggesting that the mechanism of succinate-induced attenuation of TET-2 activity is likely via product inhibition rather than competitive inhibition. Finally, exogenous ascorbic acid, a TET-activating demethylating agent, led to reversal of the above oncogenic effects of succinate in ccRCC cells. Collectively, our study demonstrates that functional SDH deficiency is a common adverse feature of ccRCC and not just limited to the kidney cancers associated with germline SDH mutations.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Succinato Desidrogenase/metabolismo , 5-Metilcitosina/química , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Mutação , Invasividade Neoplásica , Prognóstico , Succinato Desidrogenase/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
3.
PLoS Pathog ; 17(2): e1009283, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534834

RESUMO

The frequent overexpression of CD46 in malignant tumors has provided a basis to use vaccine-lineage measles virus (MeV) as an oncolytic virotherapy platform. However, widespread measles seropositivity limits the systemic deployment of oncolytic MeV for the treatment of metastatic neoplasia. Here, we report the development of MeV-Stealth, a modified vaccine MeV strain that exhibits oncolytic properties and escapes antimeasles antibodies in vivo. We engineered this virus using homologous envelope glycoproteins from the closely-related but serologically non-cross reactive canine distemper virus (CDV). By fusing a high-affinity CD46 specific single-chain antibody fragment (scFv) to the CDV-Hemagglutinin (H), ablating its tropism for human nectin-4 and modifying the CDV-Fusion (F) signal peptide we achieved efficient retargeting to CD46. A receptor binding affinity of ~20 nM was required to trigger CD46-dependent intercellular fusion at levels comparable to the original MeV H/F complex and to achieve similar antitumor efficacy in myeloma and ovarian tumor-bearing mice models. In mice passively immunized with measles-immune serum, treatment of ovarian tumors with MeV-Stealth significantly increased overall survival compared with treatment with vaccine-lineage MeV. Our results show that MeV-Stealth effectively targets and lyses CD46-expressing cancer cells in mouse models of ovarian cancer and myeloma, and evades inhibition by human measles-immune serum. MeV-Stealth could therefore represent a strong alternative to current oncolytic MeV strains for treatment of measles-immune cancer patients.


Assuntos
Anticorpos Neutralizantes/imunologia , Soros Imunes/imunologia , Vírus do Sarampo/genética , Proteína Cofatora de Membrana/metabolismo , Mieloma Múltiplo/terapia , Terapia Viral Oncolítica/métodos , Neoplasias Ovarianas/terapia , Animais , Vírus da Cinomose Canina/genética , Feminino , Hemaglutininas Virais/genética , Hemaglutininas Virais/imunologia , Humanos , Proteína Cofatora de Membrana/imunologia , Camundongos , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Ligação Proteica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Am J Hematol ; 97(3): 293-302, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34978715

RESUMO

Erdheim-Chester disease (ECD) is a histiocytic neoplasm that predominantly harbors mitogen-activated protein kinase (MAPK) pathway variants. MAPK inhibitors typically are effective treatments, but mutations outside the MAPK pathway, such as CSF1R variants, may cause refractory ECD. We describe a patient with a novel somatic mutation in CSF1R (CSF1RR549_E554delinsQ ) that resulted in refractory ECD affecting the central nervous system. Cell model studies, RNA sequencing analysis, and in silico protein modeling suggested that she had a gain-of-function mutation occurring in a region critical for autoinhibition. The patient was treated with pexidartinib, a CSF1R inhibitor, and has had a complete clinical and metabolic response lasting more than 1.5 years to date. To our knowledge, this is the first report to describe successful treatment of a patient with ECD by using an agent that specifically targets CSF1R. This case also highlights the critical role of individualized molecular profiling to identify novel therapeutic targets in ECD.


Assuntos
Aminopiridinas/administração & dosagem , Doença de Erdheim-Chester , Mutação , Pirróis/administração & dosagem , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Linhagem Celular , Doença de Erdheim-Chester/tratamento farmacológico , Doença de Erdheim-Chester/genética , Feminino , Humanos
5.
Blood ; 133(4): 356-365, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30366922

RESUMO

The frequent von Willebrand factor (VWF) variant p.Phe2561Tyr is located within the C4 domain, which also harbors the platelet GPIIb/IIIa-binding RGD sequence. To investigate its potential effect on hemostasis, we genotyped 865 patients with coronary artery disease (CAD), 915 with myocardial infarction (MI), and 417 control patients (Ludwigshafen Risk and Cardiovascular Health Study) and performed functional studies of this variant. A univariate analysis of male and female carriers of the Tyr2561 allele aged 55 years or younger revealed an elevated risk for repeated MI (odds ratio, 2.53; 95% confidence interval [CI], 1.07-5.98). The odds ratio was even higher in females aged 55 years or younger, at a value of 5.93 (95% CI, 1.12-31.24). Cone and plate aggregometry showed that compared with Phe2561, Tyr2561 was associated with increased platelet aggregate size both in probands' blood and with the recombinant variants. Microfluidic assays revealed that the critical shear rate for inducing aggregate formation was decreased to 50% by Tyr2561 compared with Phe2561. Differences in C-domain circular dichroism spectra resulting from Tyr2561 suggest an increased shear sensitivity of VWF as a result of altered association of the C domains that disrupts the normal dimer interface. In summary, our data emphasize the functional effect of the VWF C4 domain for VWF-mediated platelet aggregation in a shear-dependent manner and provide the first evidence that a functional variant of VWF plays a role in arterial thromboembolism.


Assuntos
Alelos , Mutação com Ganho de Função/genética , Predisposição Genética para Doença , Infarto do Miocárdio/genética , Tirosina/genética , Fator de von Willebrand/genética , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica , Conformação Proteica , Fatores de Risco , Fator de von Willebrand/química
6.
Anal Chem ; 92(4): 3417-3425, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31970977

RESUMO

In vitro assessment of lipid intermembrane transfer activity by cellular proteins typically involves measurement of either radiolabeled or fluorescently labeled lipid trafficking between vesicle model membranes. Use of bilayer vesicles in lipid transfer assays usually comes with inherent challenges because of complexities associated with the preparation of vesicles and their rather short "shelf life". Such issues necessitate the laborious task of fresh vesicle preparation to achieve lipid transfer assays of high quality, precision, and reproducibility. To overcome these limitations, we have assessed model membrane generation by bicelle dilution for monitoring the transfer rates and specificity of various BODIPY-labeled sphingolipids by different glycolipid transfer protein (GLTP) superfamily members using a sensitive fluorescence resonance energy transfer approach. Robust, protein-selective sphingolipid transfer is observed using donor and acceptor model membranes generated by dilution of 0.5 q-value mixtures. The sphingolipid transfer rates are comparable to those observed between small bilayer vesicles produced by sonication or ethanol injection. Among the notable advantages of using bicelle-generated model membranes are (i) easy and straightforward preparation by means that avoid lipid fluorophore degradation and (ii) long "shelf life" after production (≥6 days) and resilience to freeze-thaw storage. The bicelle-dilution-based assay is sufficiently robust, sensitive, and stable for application, not only to purified LTPs but also for LTP activity detection in crude cytosolic fractions of cell homogenates.


Assuntos
Proteínas de Transporte/análise , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Esfingolipídeos/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Bicamadas Lipídicas/química , Esfingolipídeos/química
7.
Glob Chang Biol ; 26(4): 2403-2420, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31957121

RESUMO

Conversion of tropical forests is among the primary causes of global environmental change. The loss of their important environmental services has prompted calls to integrate ecosystem services (ES) in addition to socio-economic objectives in decision-making. To test the effect of accounting for both ES and socio-economic objectives in land-use decisions, we develop a new dynamic approach to model deforestation scenarios for tropical mountain forests. We integrate multi-objective optimization of land allocation with an innovative approach to consider uncertainty spaces for each objective. These uncertainty spaces account for potential variability among decision-makers, who may have different expectations about the future. When optimizing only socio-economic objectives, the model continues the past trend in deforestation (1975-2015) in the projected land-use allocation (2015-2070). Based on indicators for biomass production, carbon storage, climate and water regulation, and soil quality, we show that considering multiple ES in addition to the socio-economic objectives has heterogeneous effects on land-use allocation. It saves some natural forest if the natural forest share is below 38%, and can stop deforestation once the natural forest share drops below 10%. For landscapes with high shares of forest (38%-80% in our study), accounting for multiple ES under high uncertainty of their indicators may, however, accelerate deforestation. For such multifunctional landscapes, two main effects prevail: (a) accelerated expansion of diversified non-natural areas to elevate the levels of the indicators and (b) increased landscape diversification to maintain multiple ES, reducing the proportion of natural forest. Only when accounting for vascular plant species richness as an explicit objective in the optimization, deforestation was consistently reduced. Aiming for multifunctional landscapes may therefore conflict with the aim of reducing deforestation, which we can quantify here for the first time. Our findings are relevant for identifying types of landscapes where this conflict may arise and to better align respective policies.

8.
Biochemistry ; 58(26): 2875-2882, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31199144

RESUMO

In the absence of arabinose, the dimeric Escherichia coli regulatory protein of the l-arabinose operon, AraC, represses expression by looping the DNA between distant half-sites. Binding of arabinose to the dimerization domains forces AraC to preferentially bind two adjacent DNA half-sites, which stimulates RNA polymerase transcription of the araBAD catabolism genes. Prior genetic and biochemical studies hypothesized that arabinose allosterically induces a helix-coil transition of a linker between the dimerization and DNA binding domains that switches the AraC conformation to an inducing state [Brown, M. J., and Schleif, R. F. (2019) Biochemistry, preceding paper in this issue (DOI: 10.1021/acs.biochem.9b00234)]. To test this hypothesis, hydrogen-deuterium exchange mass spectrometry was utilized to identify structural regions involved in the conformational activation of AraC by arabinose. Comparison of the hydrogen-deuterium exchange kinetics of individual dimeric dimerization domains and the full-length dimeric AraC protein in the presence and absence of arabinose reveals a prominent arabinose-induced destabilization of the amide hydrogen-bonded structure of linker residues (I167 and N168). This destabilization is demonstrated to result from an increased probability to form a helix capping motif at the C-terminal end of the dimerizing α-helix of the dimerization domain that preceeds the interdomain linker. These conformational changes could allow for quaternary repositioning of the DNA binding domains required for induction of the araBAD promoter through rotation of peptide backbone dihedral angles of just a couple of residues. Subtle changes in exchange rates are also visible around the arabinose binding pocket and in the DNA binding domain.


Assuntos
Fator de Transcrição AraC/metabolismo , Arabinose/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator de Transcrição AraC/química , Sítios de Ligação , DNA Bacteriano/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica
9.
Biophys J ; 115(2): 328-340, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021108

RESUMO

Sequence patterns of charge, hydrophobicity, hydrogen bonding, and other amino acid physicochemical properties contribute to mechanisms of protein folding, but how sequence composition and patterns influence the conformational dynamics of the denatured state ensemble is not fully understood. To investigate structure-sequence relationships in the denatured state, we reversed the sequence of staphylococcal nuclease and characterized its structure, thermodynamic character, and hydrodynamic radius using circular dichroism spectroscopy, dynamic light scattering, analytical ultracentrifugation, and size-exclusion chromatography as a function of temperature. The macromolecular size of "Retro-nuclease" is highly expanded in solution with characteristics similar to biological intrinsically disordered proteins. In contradistinction to a disordered state, Retro-nuclease exhibits a broad sigmoid transition of its hydrodynamic dimensions as temperature is increased, indicating a thermodynamically controlled compaction. Counterintuitively, the magnitude of these temperature-induced hydrodynamic changes exceed that observed from thermal denaturation of folded unaltered staphylococcal nuclease. Undetectable by calorimetry and intrinsic tryptophan fluorescence, the lack of heat capacity or fluorescence changes throughout the thermal transition indicate canonical hydrophobic collapse did not drive the Retro-nuclease structural transitions. Temperature-dependent circular dichroism spectroscopy performed on Retro-nuclease and computer simulations correlate to temperature sensitivity in the intrinsic sampling of backbone conformations for polyproline II and α-helix. The experimental results indicate a role for sequence direction in mediating the collapse of the polypeptide chain, whereas the simulation trends illustrate the generality of the observed heat effects on disordered protein structure.


Assuntos
Temperatura Alta , Proteínas Intrinsicamente Desordenadas/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica em alfa-Hélice , Termodinâmica
10.
J Biol Chem ; 292(9): 3866-3876, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28057753

RESUMO

Kleefstra syndrome (KS) (Mendelian Inheritance in Man (MIM) no. 610253), also known as 9q34 deletion syndrome, is an autosomal dominant disorder caused by haploinsufficiency of euchromatic histone methyltransferase-1 (EHMT1). The clinical phenotype of KS includes moderate to severe intellectual disability with absent speech, hypotonia, brachycephaly, congenital heart defects, and dysmorphic facial features with hypertelorism, synophrys, macroglossia, protruding tongue, and prognathism. Only a few cases of de novo missense mutations in EHMT1 giving rise to KS have been described. However, some EHMT1 variants have been described in individuals presenting with autism spectrum disorder or mild intellectual disability, suggesting that the phenotypic spectrum resulting from EHMT1 alterations may be quite broad. In this report, we describe two unrelated patients with complex medical histories consistent with KS in whom next generation sequencing identified the same novel c.2426C>T (p.P809L) missense variant in EHMT1 To examine the functional significance of this novel variant, we performed molecular dynamics simulations of the wild type and p.P809L variant, which predicted that the latter would have a propensity to misfold, leading to abnormal histone mark binding. Recombinant EHMT1 p.P809L was also studied using far UV circular dichroism spectroscopy and intrinsic protein fluorescence. These functional studies confirmed the model-based hypotheses and provided evidence for protein misfolding and aberrant target recognition as the underlying pathogenic mechanism for this novel KS-associated variant. This is the first report to suggest that missense variants in EHMT1 that lead to protein misfolding and disrupted histone mark binding can lead to KS.


Assuntos
Repetição de Anquirina , Anormalidades Craniofaciais/genética , Cardiopatias Congênitas/genética , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Motivos de Aminoácidos , Transtorno do Espectro Autista/genética , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 9/genética , Feminino , Variação Genética , Genômica , Humanos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Fenótipo , Dobramento de Proteína , Espectrometria de Fluorescência
12.
Biopolymers ; 109(8): e23106, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29457634

RESUMO

Protein phase diagrams have a unique potential to identify the presence of additional thermodynamic states even when non-2-state character is not readily apparent from the experimental observables used to follow protein unfolding transitions. Two-state analysis of the von Willebrand factor A3 domain has previously revealed a discrepancy in the calorimetric enthalpy obtained from thermal unfolding transitions as compared with Gibbs-Helmholtz analysis of free energies obtained from the Linear Extrapolation Method (Tischer and Auton, Prot Sci 2013; 22(9):1147-60). We resolve this thermodynamic conundrum using a Clausius-Clapeyron analysis of the urea-temperature phase diagram that defines how Δ H and the urea m-value interconvert through the slope of cm versus T, ( ∂ c m / ∂ T ) = Δ H / ( m T ) . This relationship permits the calculation of Δ H at low temperature from m-values obtained through iso-thermal urea denaturation and high temperature m-values from Δ H obtained through iso-urea thermal denaturation. Application of this equation uncovers sigmoid transitions in both cooperativity parameters as temperature is increased. Such residual thermal cooperativity of Δ H and the m-value confirms the presence of an additional state which is verified to result from a cooperative phase transition between urea-expanded and thermally-compact denatured states. Comparison of the equilibria between expanded and compact denatured ensembles of disulfide-intact and carboxyamidated A3 domains reveals that introducing a single disulfide crosslink does not affect the presence of the additional denatured state. It does, however, make a small thermodynamically favorable free energy (∼-13 ± 1 kJ/mol) contribution to the cooperative denatured state collapse transition as temperature is raised and urea concentration is lowered. The thermodynamics of this "cooperative collapse" of the denatured state retain significant compensations between the enthalpy and entropy contributions to the overall free energy.


Assuntos
Modelos Químicos , Desnaturação Proteica , Proteínas/química , Ureia/química
13.
J Biol Chem ; 291(8): 3848-59, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26677223

RESUMO

Unusually large von Willebrand factor (VWF), the first responder to vascular injury in primary hemostasis, is designed to capture platelets under the high shear stress of rheological blood flow. In type 2M von Willebrand disease, two rare mutations (G1324A and G1324S) within the platelet GPIbα binding interface of the VWF A1 domain impair the hemostatic function of VWF. We investigate structural and conformational effects of these mutations on the A1 domain's efficacy to bind collagen and adhere platelets under shear flow. These mutations enhance the thermodynamic stability, reduce the rate of unfolding, and enhance the A1 domain's resistance to limited proteolysis. Collagen binding affinity is not significantly affected indicating that the primary stabilizing effect of these mutations is to diminish the platelet binding efficiency under shear flow. The enhanced stability stems from the steric consequences of adding a side chain (G1324A) and additionally a hydrogen bond (G1324S) to His(1322) across the ß2-ß3 hairpin in the GPIbα binding interface, which restrains the conformational degrees of freedom and the overall flexibility of the native state. These studies reveal a novel rheological strategy in which the incorporation of a single glycine within the GPIbα binding interface of normal VWF enhances the probability of local unfolding that enables the A1 domain to conformationally adapt to shear flow while maintaining its overall native structure.


Assuntos
Mutação de Sentido Incorreto , Desdobramento de Proteína , Fator de von Willebrand/química , Humanos , Ligação de Hidrogênio , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Reologia , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
14.
Biochemistry ; 55(35): 4885-908, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27505032

RESUMO

Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy for decreasing disease pathologies caused by protein folding defects or deleterious kinetic transitions. Current methods of examining binding of a ligand to these marginally stable native states are limited because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, and multidomain proteins) and metastable proteins (e.g., low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein, immobilized on a BLI biosensor, to increasing denaturant concentrations (urea or GuHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remains is detected by an increased level of GroEL binding. Because this kinetic denaturant pulse is brief, the amplitude of binding of GroEL to the immobilized protein depends on the duration of the exposure to the denaturant, the concentration of the denaturant, wash times, and the underlying protein unfolding-refolding kinetics; fixing all other parameters and plotting the GroEL binding amplitude versus denaturant pulse concentration result in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein manifests as a decreased level of GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant concentrations. This particular platform approach can be used to identify small molecules and/or solution conditions that can stabilize or destabilize thermally stable proteins, multidomain proteins, oligomeric proteins, and, most importantly, aggregation-prone metastable proteins.


Assuntos
Chaperonina 60/química , Proteínas/química , Técnicas Biossensoriais , Cinética , Ligantes , Desnaturação Proteica , Dobramento de Proteína , Termodinâmica
15.
Biophys J ; 109(2): 398-406, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200876

RESUMO

The von Willebrand factor (VWF) A1 and A3 domains are structurally isomorphic yet exhibit distinct mechanisms of unfolding. The A1 domain, responsible for platelet adhesion to VWF in hemostasis, unfolds through a molten globule intermediate in an apparent three-state mechanism, while A3 unfolds by a classical two-state mechanism. Inspection of the sequences or structures alone does not elucidate the source of this thermodynamic conundrum; however, the three-state character of the A1 domain suggests that it has more than one cooperative substructure yielding two separate unfolding transitions not present in A3. We investigate the extent to which structural elements contributing to intermediate conformations can be identified using a residue-specific implementation of the structure-energy-equivalence-of-domains algorithm (SEED), which parses proteins of known structure into their constituent thermodynamically cooperative components using protein-group-specific, transfer free energies. The structural elements computed to contribute to the non-two-state character coincide with regions where Von Willebrand disease mutations induce misfolded molten globule conformations of the A1 domain. This suggests a mechanism for the regulation of rheological platelet adhesion to A1 based on cooperative flexibility of the α2 and α3 helices flanking the platelet GPIbα receptor binding interface.


Assuntos
Dobramento de Proteína , Fator de von Willebrand/química , Algoritmos , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Termodinâmica , Fator de von Willebrand/genética
16.
Biophys J ; 107(5): 1185-1195, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25185554

RESUMO

The primary hemostatic von Willebrand factor (vWF) functions to sequester platelets from rheological blood flow and mediates their adhesion to damaged subendothelium at sites of vascular injury. We have surveyed the effect of 16 disease-causing mutations identified in patients diagnosed with the bleeding diathesis disorder, von Willebrand disease (vWD), on the structure and rheology of vWF A1 domain adhesiveness to the platelet GPIbα receptor. These mutations have a dynamic phenotypical range of bleeding from lack of platelet adhesion to severe thrombocytopenia. Using new rheological tools in combination with classical thermodynamic, biophysical, and spectroscopic metrics, we establish a high propensity of the A1 domain to misfold to pathological molten globule conformations that differentially alter the strength of platelet adhesion under shear flow. Rheodynamic analysis establishes a quantitative rank order between shear-rate-dependent platelet-translocation pause times that linearly correlate with clinically reported measures of patient platelet counts and the severity of thrombocytopenia. These results suggest that specific secondary structure elements remaining in these pathological conformations of the A1 domain regulate GPIbα binding and the strength of vWF-platelet interactions, which affects the vWD functional phenotype and the severity of thrombocytopenia.


Assuntos
Doenças de von Willebrand/metabolismo , Fator de von Willebrand/metabolismo , Plaquetas/metabolismo , Adesão Celular/genética , Adesão Celular/fisiologia , Dicroísmo Circular , Humanos , Modelos Lineares , Mutação , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Reologia , Índice de Gravidade de Doença , Análise Espectral , Termodinâmica , Ureia/metabolismo , Doenças de von Willebrand/genética , Fator de von Willebrand/genética
17.
Proteins ; 82(12): 3373-84, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25244701

RESUMO

Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs.


Assuntos
Alanina/química , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Fragmentos de Peptídeos/química , Prolina/química , Proteína Supressora de Tumor p53/química , Alanina/análise , Substituição de Aminoácidos , Dicroísmo Circular , Humanos , Hidrodinâmica , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/genética , Mutação , Nefelometria e Turbidimetria , Fragmentos de Peptídeos/genética , Prolina/análise , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteína Supressora de Tumor p53/genética
18.
Proteins ; 82(5): 867-78, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24265179

RESUMO

Clinical mutations in patients diagnosed with Type 2A von Willebrand disease (VWD) have been identified that break the single disulfide bond linking N- and C-termini in the vWF A1 domain. We have modeled the effect of these mutations on the disulfide-bonded structure of A1 by reducing and carboxy-amidating these cysteines. Solution biophysical studies show that loss of this disulfide bond induces a molten globule conformational state lacking global tertiary structure but retaining residual secondary structure. The conformational dependence of platelet adhesion to these native and molten globule states of A1 is quantitatively compared using real-time high-speed video microscopy analysis of platelet translocation dynamics under shear flow in a parallel plate microfluidic flow chamber. While normal platelets translocating on surface-captured native A1 domain retain the catch-bond character of pause times that increase as a function of shear rate at low shear and decrease as a function of shear rate at high shear, platelets that interact with A1 lacking the disulfide bond remain stably attached and do not translocate. Based on these findings, we propose that the shear stress-sensitive regulation of the A1-GPIb interaction is due to folding the tertiary structure of this domain. Removal of the tertiary structure by disrupting the disulfide bond destroys this regulatory mechanism resulting in high-strength interactions between platelets and vWF A1 that are dependent only on residual secondary structure elements present in the molten globule conformation.


Assuntos
Plaquetas/fisiologia , Reologia , Resistência ao Cisalhamento , Fator de von Willebrand/química , Acrilamida/metabolismo , Plaquetas/efeitos dos fármacos , Cromatografia em Gel , Dissulfetos/metabolismo , Guanidina/farmacologia , Humanos , Oxirredução/efeitos dos fármacos , Adesividade Plaquetária/fisiologia , Desnaturação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Reologia/efeitos dos fármacos , Resistência ao Cisalhamento/efeitos dos fármacos , Espectrometria de Fluorescência , Temperatura , Triptofano/metabolismo
19.
Biopolymers ; 101(11): 1129-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24931846

RESUMO

The ionic liquid 1-ethyl-3-methyl imidazolium chloride (EMIM Cl) and the amino acid l-arginine hydrochloride (l-ArgHCl) have been successfully used to improve the yield of oxidative refolding for various proteins. However, the molecular mechanisms behind the actions of such solvent additives-especially of ionic liquids-are still not well understood. To analyze these mechanisms, we have determined the transfer free energies from water into ionic liquid solutions of proteinogenic amino acids and of diketopiperazine as peptide bond analogue. For EMIM Cl and 1-ethyl-3-methyl imidazolium diethyl phosphate, which had a suppressive effect on protein refolding, as well as for l-ArgHCl favorable interactions with amino acid side chains, but no favorable interactions with the peptide backbone could be observed. A quantitative analysis of other ionic liquids together with their already published effects on protein refolding showed that only solvent additives within a certain range of hydrophobicity, chaotropicity and kosmotropicity were effective for the refolding of recombinant plasminogen activator.


Assuntos
Arginina/química , Interações Hidrofóbicas e Hidrofílicas , Líquidos Iônicos/química , Ativadores de Plasminogênio/química , Redobramento de Proteína , Proteínas Recombinantes/química , Cloreto de Sódio/química , Aminoácidos/química , Guanidina/química , Imidazóis/química , Organofosfatos/química , Oxirredução , Solubilidade , Solventes/química , Termodinâmica
20.
Oecologia ; 175(1): 375-93, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24532178

RESUMO

Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.


Assuntos
Ecossistema , Microbiologia do Solo , Solo/química , Árvores/microbiologia , Agricultura , Biomassa , Carbono/análise , Equador , Cadeia Alimentar , Fungos , Modelos Lineares , Nitrogênio/análise , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA