Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pediatr ; 183(3): 1059-1072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112802

RESUMO

Point-of-care brain ultrasound and transcranial doppler or color-coded doppler is being increasingly used as an essential diagnostic and monitoring tool at the bedside of critically ill neonates and children. Brain ultrasound has already established as a cornerstone of daily practice in the management of the critically ill newborn for diagnosis and follow-up of the most common brain diseases, considering the easiness to insonate the brain through transfontanellar window. In critically ill children, doppler based techniques are used to assess cerebral hemodynamics in acute brain injury and recommended for screening patients suffering from sickle cell disease at risk for stroke. However, more evidence is needed regarding the accuracy of doppler based techniques for non-invasive estimation of cerebral perfusion pressure and intracranial pressure, as well as regarding the accuracy of brain ultrasound for diagnosis and monitoring of acute brain parenchyma alterations in children. This review is aimed at providing a comprehensive overview for clinicians of the technical, anatomical, and physiological basics for brain ultrasonography and transcranial doppler or color-coded doppler, and of the current status and future perspectives of their clinical applications in critically ill neonates and children. CONCLUSION: In critically ill neonates, brain ultrasound for diagnosis and follow-up of the most common cerebral pathologies of the neonatal period may be considered the standard of care. Data are needed about the possible role of doppler techniques for the assessment of cerebral perfusion and vasoreactivity of the critically ill neonate with open fontanelles. In pediatric critical care, doppler based techniques should be routinely adopted to assess and monitor cerebral hemodynamics. New technologies and more evidence are needed to improve the accuracy of brain ultrasound for the assessment of brain parenchyma of critically ill children with fibrous fontanelles. WHAT IS KNOWN: • In critically ill neonates, brain ultrasound for early diagnosis and follow-up of the most common cerebral and neurovascular pathologies of the neonatal period is a cornerstone of daily practice. In critically ill children, doppler-based techniques are more routinely used to assess cerebral hemodynamics and autoregulation after acute brain injury and to screen patients at risk for vasospasm or stroke (e.g., sickle cell diseases, right-to-left shunts). WHAT IS NEW: • In critically ill neonates, research is currently focusing on the use of novel high frequency probes, even higher than 10 MHz, especially for extremely preterm babies. Furthermore, data are needed about the role of doppler based techniques for the assessment of cerebral perfusion and vasoreactivity of the critically ill neonate with open fontanelles, also integrated with a non-invasive assessment of brain oxygenation. In pediatric critical care, new technologies should be developed to improve the accuracy of brain ultrasound for the assessment of brain parenchyma of critically ill children with fibrous fontanelles. Furthermore, large multicenter studies are needed to clarify role and accuracy of doppler-based techniques to assess cerebral perfusion pressure and its changes after treatment interventions.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Recém-Nascido , Humanos , Criança , Sistemas Automatizados de Assistência Junto ao Leito , Estado Terminal , Ultrassonografia , Ultrassonografia Doppler Transcraniana/métodos , Encéfalo/diagnóstico por imagem , Lesões Encefálicas/diagnóstico por imagem
2.
Vaccines (Basel) ; 12(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39066408

RESUMO

The TAK-003 dengue vaccine was licensed in Europe in December 2022, and the official recommendations from most EU countries are still under formulation. To support policymakers, we performed a meta-analysis to quantify TAK-003's immunogenicity, efficacy and safety among seronegative and seropositive populations after the administration of one or two vaccine doses. We included trials retrieved from MEDLINE, Scopus and ClinicalTrials.gov. The outcomes were the rates of seroconversion, virologically confirmed dengue fever and serious adverse events after each vaccine dose. Data were combined using random-effect proportion or head-to-head meta-analyses. We retrieved a total of 19 datasets, including >20,000 participants. TAK-003 showed an excellent safety profile, and the immunogenicity after two doses against the four DENV serotypes was ≥90% among both adults and children/adolescents who were either seronegative or seropositive at baseline. A single dose was able to elicit a high immunogenic response among adults (≥70%) and children/adolescents (≥90%). The primary two-dose immunization course halved the risk of all types of virologically confirmed dengue fever among seropositive children/adolescents, but seronegative minors were only protected against the diseases caused by DENV-1 and DENV-2. Overall, the results support the use of TAK-003 for the prevention of dengue fever in the pediatric population of endemic countries. Uncertainties remain on the use of a single vaccine dose in non-endemic countries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA