Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nucleic Acids Res ; 52(5): 2355-2371, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38180815

RESUMO

The yeast Rif2 protein is known to inhibit Mre11 nuclease and the activation of Tel1 kinase through a short motif termed MIN, which binds the Rad50 subunit and simulates its ATPase activity in vitro. The mechanism by which Rif2 restrains Tel1 activation and the consequences of this inhibition at DNA double-strand breaks (DSBs) are poorly understood. In this study, we employed AlphaFold-Multimer modelling to pinpoint and validate the interaction surface between Rif2 MIN and Rad50. We also engineered the rif2-S6E mutation that enhances the inhibitory effect of Rif2 by increasing Rif2-Rad50 interaction. Unlike rif2Δ, the rif2-S6E mutation impairs hairpin cleavage. Furthermore, it diminishes Tel1 activation by inhibiting Tel1 binding to DSBs while leaving MRX association unchanged, indicating that Rif2 can directly inhibit Tel1 recruitment to DSBs. Additionally, Rif2S6E reduces Tel1-MRX interaction and increases stimulation of ATPase by Rad50, indicating that Rif2 binding to Rad50 induces an ADP-bound MRX conformation that is not suitable for Tel1 binding. The decreased Tel1 recruitment to DSBs in rif2-S6E cells impairs DSB end-tethering and this bridging defect is suppressed by expressing a Tel1 mutant variant that increases Tel1 persistence at DSBs, suggesting a direct role for Tel1 in the bridging of DSB ends.


Assuntos
Proteínas de Ligação a DNA , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Proteínas de Ligação a Telômeros , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA/genética , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
2.
Hum Mol Genet ; 32(19): 2901-2912, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37440454

RESUMO

Telomere biology disorders (TBDs) are characterized by short telomeres, premature aging, bone marrow failure and cancer predisposition. Germline mutations in NHP2, encoding for one component of the telomerase cofactor H/ACA RNA binding complex together with Dyskerin, NOP10 and GAR1, have been previously reported in rare cases of TBDs. Here, we report two novel NHP2 variants (NHP2-A39T and NHP2-T44M) identified in a compound heterozygous patient affected by premature aging, bone marrow failure/myelodysplastic syndrome and gastric cancer. Although still able to support cell viability, both variants reduce the levels of hTR, the telomerase RNA component, and telomerase activity, expanding the panel of NHP2 pathological variants. Furthermore, both variants fail to be incorporated in the H/ACA RNA binding complex when in competition with wild-type endogenous NHP2, and the lack of incorporation causes their drastic proteasomal degradation. By RoseTTAFold prediction followed by molecular dynamics simulations, we reveal a dramatic distortion of residues 33-41, which normally position on top of the NHP2 core, as the main defect of NHP2-A39T, and high flexibility and the misplacement of the N-terminal region (residues 1-24) in NHP2-T44M and, to a lower degree, in NHP2-A39T. Because deletion of amino acids 2-24 causes a reduction in NHP2 levels only in the presence of wild-type NHP2, while deletion of amino acids 2-38 completely disrupts NHP2 stability, we propose that the two variants are mis-incorporated into the H/ACA binding complex due to the altered dynamics of the first 23 amino acids and/or the distortion of the residues 25-41 loop.


Assuntos
Senilidade Prematura , Telomerase , Humanos , Telomerase/genética , Ribonucleoproteínas Nucleares Pequenas/genética , RNA/genética , RNA/metabolismo , Transtornos da Insuficiência da Medula Óssea , Estabilidade Proteica , Telômero/metabolismo , Proteínas Nucleares/genética
3.
Nucleic Acids Res ; 51(4): 1783-1802, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36762474

RESUMO

DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or non-homologous end-joining (NHEJ). NHEJ is induced by the binding to DSBs of the Ku70-Ku80 heterodimer, which acts as a hub for the recruitment of downstream NHEJ components. An important issue in DSB repair is the maintenance of the DSB ends in close proximity, a function that in yeast involves the MRX complex and Sae2. Here, we provide evidence that Ku contributes to keep the DNA ends tethered to each other. The ku70-C85Y mutation, which increases Ku affinity for DNA and its persistence very close to the DSB ends, enhances DSB end-tethering and suppresses the end-tethering defect of sae2Δ cells. Impairing histone removal around DSBs either by eliminating Tel1 kinase activity or nucleosome remodelers enhances Ku persistence at DSBs and DSB bridging, suggesting that Tel1 antagonizes the Ku function in supporting end-tethering by promoting nucleosome removal and possibly Ku sliding inwards. As Ku provides a block to DSB resection, this Tel1 function can be important to regulate the mode by which DSBs are repaired.


Assuntos
Proteínas de Ligação a DNA , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteínas de Ligação a DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Autoantígeno Ku/metabolismo , Nucleossomos , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
J Biol Chem ; 299(5): 104647, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965615

RESUMO

Calcium is ubiquitously present in all living cells and plays important regulatory roles in a wide variety of biological processes. In yeast, many effects of calcium are mediated via the action of calcineurin, a calcium/calmodulin-dependent protein phosphatase. Proper signaling of calcium and calcineurin is important in yeast, and the calcineurin pathway has emerged as a valuable target for developing novel antifungal drugs. Here, we report a role of YDL206W in calcium and calcineurin signaling in yeast. YDL206W is an uncharacterized gene in yeast, encoding a protein with two sodium/calcium exchange domains. Disrupting the YDL206W gene leads to a diminished level of calcium-induced activation of calcineurin and a reduced accumulation of cytosolic calcium. Consistent with a role of calcineurin in regulating pheromone and cell wall integrity signaling, the ydl206wΔ mutants display an enhanced growth arrest induced by pheromone treatment and poor growth at elevated temperature. Subcellular localization studies indicate that YDL206W is localized in endoplasmic reticulum and Golgi. Together, our results reveal YDL206W as a new regulator for calcineurin signaling in yeast and suggest a role of the endoplasmic reticulum and Golgi in regulating cytosolic calcium in yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transdução de Sinais , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/metabolismo , Quitina/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética
5.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569756

RESUMO

DNA double-strand breaks (DSBs) are a significant threat to cell viability due to the induction of genome instability and the potential loss of genetic information. One of the key players for early DNA damage response is the conserved Mre11/Rad50 Nbs1/Xrs2 (MRN/X) complex, which is quickly recruited to the DNA's ruptured ends and is required for their tethering and their subsequent repair via different pathways. The MRN/X complex associates with several other proteins to exert its functions, but it also exploits sophisticated internal dynamic properties to orchestrate the several steps required to address the damage. In this review, we summarize the intrinsic molecular features of the MRN/X complex through biophysical, structural, and computational analyses in order to describe the conformational transitions that allow for this complex to accomplish its multiple functions.


Assuntos
Núcleo Celular , Quebras de DNA de Cadeia Dupla , Conformação Molecular , Núcleo Celular/metabolismo , Hidrolases Anidrido Ácido/genética , DNA/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Dano ao DNA
6.
EMBO J ; 37(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29925516

RESUMO

Homologous recombination is triggered by nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection requires the Mre11-Rad50-Xrs2 (MRX) complex, which promotes the activity of Exo1 nuclease through a poorly understood mechanism. Here, we describe the Mre11-R10T mutant variant that accelerates DSB resection compared to wild-type Mre11 by potentiating Exo1-mediated processing. This increased Exo1 resection activity leads to a decreased association of the Ku complex to DSBs and an enhanced DSB resection in G1, indicating that Exo1 has a direct function in preventing Ku association with DSBs. Molecular dynamics simulations show that rotation of the Mre11 capping domains is able to induce unwinding of double-strand DNA (dsDNA). The R10T substitution causes altered orientation of the Mre11 capping domain that leads to persistent melting of the dsDNA end. We propose that MRX creates a specific DNA end structure that promotes Exo1 resection activity by facilitating the persistence of this nuclease on the DSB ends, uncovering a novel MRX function in DSB resection.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Fúngico/metabolismo , Exodesoxirribonucleases/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Fúngico/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Complexos Multiproteicos/genética , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nucleic Acids Res ; 48(5): 2424-2441, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31879780

RESUMO

The cellular response to DNA double-strand breaks (DSBs) is initiated by the Mre11-Rad50-Xrs2 (MRX) complex that has structural and catalytic functions. MRX association at DSBs is counteracted by Rif2, which is known to interact with Rap1 that binds telomeric DNA through two tandem Myb-like domains. Whether and how Rap1 acts at DSBs is unknown. Here we show that Rif2 inhibits MRX association to DSBs in a manner dependent on Rap1, which binds to DSBs and promotes Rif2 association to them. Rap1 in turn can negatively regulate MRX function at DNA ends also independently of Rif2. In fact, a characterization of Rap1 mutant variants shows that Rap1 binding to DNA through both Myb-like domains results in formation of Rap1-DNA complexes that control MRX functions at both DSBs and telomeres primarily through Rif2. By contrast, Rap1 binding to DNA through a single Myb-like domain results in formation of high stoichiometry complexes that act at DNA ends mostly in a Rif2-independent manner. Altogether these findings indicate that the DNA binding modes of Rap1 influence its functional properties, thus highlighting the structural plasticity of this protein.


Assuntos
DNA Fúngico/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Modelos Biológicos , Mutação/genética , Ligação Proteica , Saccharomyces cerevisiae/citologia , Complexo Shelterina , Transcrição Gênica
8.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628517

RESUMO

Neurofibromin, the main RasGAP in the nervous system, is a 2818 aa protein with several poorly characterized functional domains. Mutations in the NF1-encoding gene lead to an autosomal dominant syndrome, neurofibromatosis, with an incidence of 1 out of 3000 newborns. Missense mutations spread in the Sec14-PH-encoding sequences as well. Structural data could not highlight the defect in mutant Sec14-PH functionality. By performing molecular dynamics simulations at different temperatures, we found that the lid-lock is fundamental for the structural interdependence of the NF1 bipartite Sec14-PH domain. In fact, increased flexibility in the lid-lock loop, observed for the K1750Δ mutant, leads to disconnection of the two subdomains and can affect the stability of the Sec14 subdomain.


Assuntos
Neurofibromatose 1 , Neurofibromina 1 , Genes da Neurofibromatose 1 , Humanos , Recém-Nascido , Simulação de Dinâmica Molecular , Neurofibromatose 1/genética , Neurofibromina 1/genética , Domínios de Homologia à Plecstrina
9.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806150

RESUMO

Cannabidiol (CBD) is a non-psychoactive phytocannabinoid that has been discussed for its safety and efficacy in cancer treatments. For this reason, we have inquired into its use on triple-negative human breast cancer. Analyzing the biological effects of CBD on MDA-MB-231, we have demonstrated that both CBD dosage and serum concentrations in the culture medium influence its outcomes; furthermore, light scattering studies demonstrated that serum impacts the CBD aggregation state by acting as a surfactant agent. Pharmacological studies on CBD in combination with chemotherapeutic agents reveal that CBD possesses a protective action against the cytotoxic effect exerted by cisplatin on MDA-MB-231 grown in standard conditions. Furthermore, in a low serum condition (0.5%), starting from a threshold concentration (5 µM), CBD forms aggregates, exerts cytostatic antiproliferative outcomes, and promotes cell cycle arrest activating autophagy. At doses above the threshold, CBD exerts a highly cytotoxic effect inducing bubbling cell death. Finally, IGF-1 and EGF antagonize the antiproliferative effect of CBD protecting cells from harmful consequences of CBD aggregates. In conclusion, CBD effect is strongly associated with the physical state and concentration that reaches the treated cells, parameters not taken into account in most of the research papers.


Assuntos
Antineoplásicos , Canabidiol , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Linhagem Celular Tumoral , Humanos , Fator de Crescimento Insulin-Like I/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
10.
Nucleic Acids Res ; 47(7): 3550-3567, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698745

RESUMO

Activation of the checkpoint protein Tel1 requires the Mre11-Rad50-Xrs2 (MRX) complex, which recruits Tel1 at DNA double-strand breaks (DSBs) through direct interaction between Tel1 and Xrs2. However, in vitro Tel1 activation by MRX requires ATP binding to Rad50, suggesting a role also for the MR subcomplex in Tel1 activation. Here we describe two separation-of-functions alleles, mre11-S499P and rad50-A78T, which we show to specifically affect Tel1 activation without impairing MRX functions in DSB repair. Both Mre11-S499P and Rad50-A78T reduce Tel1-MRX interaction leading to poor Tel1 association at DSBs and consequent loss of Tel1 activation. The Mre11-S499P variant reduces Mre11-Rad50 interaction, suggesting an important role for MR complex formation in Tel1 activation. Molecular dynamics simulations show that the wild type MR subcomplex bound to ATP lingers in a tightly 'closed' conformation, while ADP presence leads to the destabilization of Rad50 dimer and of Mre11-Rad50 association, both events being required for MR conformational transition to an open state. By contrast, MRA78T undertakes complex opening even if Rad50 is bound to ATP, indicating that defective Tel1 activation caused by MRA78T results from destabilization of the ATP-bound conformational state.


Assuntos
Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Ativação Transcricional/genética , Trifosfato de Adenosina/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA/genética , Reparo do DNA/genética , DNA Fúngico/genética , Conformação Molecular , Complexos Multiproteicos/genética , Ligação Proteica/genética , Multimerização Proteica/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
11.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502388

RESUMO

To achieve growth, microbial organisms must cope with stresses and adapt to the environment, exploiting the available nutrients with the highest efficiency. In Saccharomyces cerevisiae, Ras/PKA and Snf1/AMPK pathways regulate cellular metabolism according to the supply of glucose, alternatively supporting fermentation or mitochondrial respiration. Many reports have highlighted crosstalk between these two pathways, even without providing a comprehensive mechanism of regulation. Here, we show that glucose-dependent inactivation of Snf1/AMPK is independent from the Ras/PKA pathway. Decoupling glucose uptake rate from glucose concentration, we highlight a strong coordination between glycolytic metabolism and Snf1/AMPK, with an inverse correlation between Snf1/AMPK phosphorylation state and glucose uptake rate, regardless of glucose concentration in the medium. Despite fructose-1,6-bisphosphate (F1,6BP) being proposed as a glycolytic flux sensor, we demonstrate that glucose-6-phosphate (G6P), and not F1,6BP, is involved in the control of Snf1/AMPK phosphorylation state. Altogether, this study supports a model by which Snf1/AMPK senses glucose flux independently from PKA activity, and thanks to conversion of glucose into G6P.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Transporte Biológico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fermentação , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glicólise , Mitocôndrias/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo
12.
Nucleic Acids Res ; 46(6): 2990-3008, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29420790

RESUMO

Sae2 cooperates with the Mre11-Rad50-Xrs2 (MRX) complex to initiate resection of DNA double-strand breaks (DSBs) and to maintain the DSB ends in close proximity to allow their repair. How these diverse MRX-Sae2 functions contribute to DNA damage resistance is not known. Here, we describe mre11 alleles that suppress the hypersensitivity of sae2Δ cells to genotoxic agents. By assessing the impact of these mutations at the cellular and structural levels, we found that all the mre11 alleles that restore sae2Δ resistance to both camptothecin and phleomycin affect the Mre11 N-terminus and suppress the resection defect of sae2Δ cells by lowering MRX and Tel1 association to DSBs. As a consequence, the diminished Tel1 persistence potentiates Sgs1-Dna2 resection activity by decreasing Rad9 association to DSBs. By contrast, the mre11 mutations restoring sae2Δ resistance only to phleomycin are located in Mre11 C-terminus and bypass Sae2 function in end-tethering but not in DSB resection, possibly by destabilizing the Mre11-Rad50 open conformation. These findings unmask the existence of structurally distinct Mre11 domains that support resistance to genotoxic agents by mediating different processes.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Antineoplásicos/farmacologia , Camptotecina/farmacologia , DNA Helicases/química , DNA Helicases/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Fleomicinas/farmacologia , Domínios Proteicos , Multimerização Proteica/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
13.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260658

RESUMO

Palmitoylethanolamide (PEA) belongs to the class of N-acylethanolamine and is an endogenous lipid potentially useful in a wide range of therapeutic areas; products containing PEA are licensed for use in humans as a nutraceutical, a food supplement, or food for medical purposes for its analgesic and anti-inflammatory properties demonstrating efficacy and tolerability. However, the exogenously administered PEA is rapidly inactivated; in this process, fatty acid amide hydrolase (FAAH) plays a key role both in hepatic metabolism and in intracellular degradation. So, the aim of the present study was the design and synthesis of PEA analogues that are more resistant to FAAH-mediated hydrolysis. A small library of PEA analogues was designed and tested by molecular docking and density functional theory calculations to find the more stable analogue. The computational investigation identified RePEA as the best candidate in terms of both synthetic accessibility and metabolic stability to FAAH-mediated hydrolysis. The selected compound was synthesized and assayed ex vivo to monitor FAAH-mediated hydrolysis and to confirm its anti-inflammatory properties. 1H-NMR spectroscopy performed on membrane samples containing FAAH in integral membrane protein demonstrated that RePEA is not processed by FAAH, in contrast with PEA. Moreover, RePEA retains PEA's ability to inhibit LPS-induced cytokine release in both murine N9 microglial cells and human PMA-THP-1 cells.


Assuntos
Amidas/química , Amidas/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Ácidos Graxos/química , Modelos Moleculares , Ácidos Palmíticos/química , Ácidos Palmíticos/metabolismo , Animais , Forma Celular , Sobrevivência Celular , Humanos , Hidrólise , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ligantes , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , PPAR alfa/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Especificidade por Substrato , Células THP-1 , Termodinâmica , Fator de Necrose Tumoral alfa/metabolismo
14.
Biochim Biophys Acta Mol Cell Res ; 1865(1): 117-131, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28986220

RESUMO

The relevance of mitochondrial DNA (mtDNA) mutations in cancer process is still unknown. Since the mutagenesis of mitochondrial genome in mammals is not possible yet, we have exploited budding yeast S. cerevisiae as a model to study the effects of tumor-associated mutations in the mitochondrial MTATP6 gene, encoding subunit 6 of ATP synthase, on the energy metabolism. We previously reported that four mutations in this gene have a limited impact on the production of cellular energy. Here we show that two mutations, Atp6-P163S and Atp6-K90E (human MTATP6-P136S and MTATP6-K64E, found in prostate and thyroid cancer samples, respectively), increase sensitivity of yeast cells both to compounds inducing oxidative stress and to high concentrations of calcium ions in the medium, when Om45p, the component of porin complex in outer mitochondrial membrane (OM), was fused to GFP. In OM45-GFP background, these mutations affect the activation of yeast permeability transition pore (yPTP, also called YMUC, yeast mitochondrial unspecific channel) upon calcium induction. Moreover, we show that calcium addition to isolated mitochondria heavily induced the formation of ATP synthase dimers and oligomers, recently proposed to form the core of PTP, which was slower in the mutants. We show the genetic evidence for involvement of mitochondrial ATP synthase in calcium homeostasis and permeability transition in yeast. This paper is a first to show, although in yeast model organism, that mitochondrial ATP synthase mutations, which accumulate during carcinogenesis process, may be significant for cancer cell escape from apoptosis.


Assuntos
Cálcio/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo , Substituição de Aminoácidos , Apoptose/genética , Homeostase/genética , Humanos , Mutação de Sentido Incorreto , Neoplasias/metabolismo , Neoplasias/patologia , Organismos Geneticamente Modificados , Permeabilidade , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Curr Genet ; 65(1): 11-16, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29922906

RESUMO

The evolutionarily conserved Mre11-Rad50-Xrs2 (MRX) complex cooperates with the Sae2 protein in initiating resection of DNA double-strand breaks (DSBs) and in maintaining the DSB ends tethered to each other for their accurate repair. How these MRX-Sae2 functions contribute to DNA damage resistance is not understood. By taking advantage of mre11 alleles that suppress the hypersensitivity of sae2∆ cells to genotoxic agents, we have recently found that Mre11 can be divided in two structurally distinct domains that support resistance to genotoxic agents by mediating different processes. While the Mre11 N-terminal domain impacts on the resection activity of long-range resection nucleases by mediating MRX and Tel1/ATM association to DNA DSBs, the C-terminus influences the MRX-tethering activity by its virtue to interact with Rad50. Given the evolutionary conservation of the MRX complex, our results have implications for understanding the consequences of its dysfunctions in human diseases.


Assuntos
Dano ao DNA , DNA Fúngico/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endonucleases/genética , Endonucleases/metabolismo , Exodesoxirribonucleases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Biochim Biophys Acta ; 1823(7): 1208-16, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22575457

RESUMO

In Saccharomyces cerevisiae, cAMP/pKA pathway plays a major role in metabolism, stress resistance and proliferation control. cAMP is produced by adenylate cyclase, which is activated both by Gpr1/Gpa2 system and Ras proteins, regulated by Cdc25/Sdc25 guanine exchange factors and Ira GTPase activator proteins. Recently, both Ras2 and Cdc25 RasGEF were reported to localize not only in plasma membrane but also in internal membranes. Here, the subcellular localization of Ras signaling complex proteins was investigated both by fluorescent tagging and by biochemical cell membrane fractionation on sucrose gradients. Although a consistent minor fraction of Ras signaling complex components was found in plasma membrane during exponential growth on glucose, Cdc25 appears to localize mainly on ER membranes, while Ira2 and Cyr1 are also significantly present on mitochondria. Moreover, PKA Tpk1 catalytic subunit overexpression induces Ira2 protein to move from mitochondria to ER membranes. These data confirm the hypothesis that different branches of Ras signaling pathways could involve different subcellular compartments, and that relocalization of Ras signaling complex components is subject to PKA control.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Membranas Mitocondriais/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/citologia
17.
Front Mol Biosci ; 9: 856030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664674

RESUMO

Calcium homeostasis and signaling processes in Saccharomyces cerevisiae, as well as in any eukaryotic organism, depend on various transporters and channels located on both the plasma and intracellular membranes. The activity of these proteins is regulated by a number of feedback mechanisms that act through the calmodulin-calcineurin pathway. When exposed to hypotonic shock (HTS), yeast cells respond with an increased cytosolic calcium transient, which seems to be conditioned by the opening of stretch-activated channels. To better understand the role of each channel and transporter involved in the generation and recovery of the calcium transient-and of their feedback regulations-we defined and analyzed a mathematical model of the calcium signaling response to HTS in yeast cells. The model was validated by comparing the simulation outcomes with calcium concentration variations before and during the HTS response, which were observed experimentally in both wild-type and mutant strains. Our results show that calcium normally enters the cell through the High Affinity Calcium influx System and mechanosensitive channels. The increase of the plasma membrane tension, caused by HTS, boosts the opening probability of mechanosensitive channels. This event causes a sudden calcium pulse that is rapidly dissipated by the activity of the vacuolar transporter Pmc1. According to model simulations, the role of another vacuolar transporter, Vcx1, is instead marginal, unless calcineurin is inhibited or removed. Our results also suggest that the mechanosensitive channels are subject to a calcium-dependent feedback inhibition, possibly involving calmodulin. Noteworthy, the model predictions are in accordance with literature results concerning some aspects of calcium homeostasis and signaling that were not specifically addressed within the model itself, suggesting that it actually depicts all the main cellular components and interactions that constitute the HTS calcium pathway, and thus can correctly reproduce the shaping of the calcium signature by calmodulin- and calcineurin-dependent complex regulations. The model predictions also allowed to provide an interpretation of different regulatory schemes involved in calcium handling in both wild-type and mutants yeast strains. The model could be easily extended to represent different calcium signals in other eukaryotic cells.

18.
Cell Rep ; 34(13): 108906, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33789097

RESUMO

The Mre11-Rad50-Xrs2 (MRX) complex detects and processes DNA double-strand breaks (DSBs). Its DNA binding and processing activities are regulated by transitions between an ATP-bound state and a post-hydrolysis cutting state that is nucleolytically active. Mre11 endonuclease activity is stimulated by Sae2, whose lack increases MRX persistence at DSBs and checkpoint activation. Here we show that the Rif2 protein inhibits Mre11 endonuclease activity and is responsible for the increased MRX retention at DSBs in sae2Δ cells. We identify a Rad50 residue that is important for Rad50-Rif2 interaction and Rif2 inhibition of Mre11 nuclease. This residue is located near a Rad50 surface that binds Sae2 and is important in stabilizing the Mre11-Rad50 (MR) interaction in the cutting state. We propose that Sae2 stimulates Mre11 endonuclease activity by stabilizing a post-hydrolysis MR conformation that is competent for DNA cleavage, whereas Rif2 antagonizes this Sae2 function and stabilizes an endonuclease inactive MR conformation.


Assuntos
Quebras de DNA de Cadeia Dupla , Endonucleases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Endonucleases/genética , Deleção de Genes , Modelos Biológicos , Mutação/genética , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética
19.
Front Mol Biosci ; 8: 625979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681292

RESUMO

Ras oncoproteins play a crucial role in the onset, maintenance, and progression of the most common and deadly human cancers. Despite extensive research efforts, only a few mutant-specific Ras inhibitors have been reported. We show that cmp4-previously identified as a water-soluble Ras inhibitor- targets multiple steps in the activation and downstream signaling of different Ras mutants and isoforms. Binding of this pan-Ras inhibitor to an extended Switch II pocket on HRas and KRas proteins induces a conformational change that down-regulates intrinsic and GEF-mediated nucleotide dissociation and exchange and effector binding. A mathematical model of the Ras activation cycle predicts that the inhibitor severely reduces the proliferation of different Ras-driven cancer cells, effectively cooperating with Cetuximab to reduce proliferation even of Cetuximab-resistant cancer cell lines. Experimental data confirm the model prediction, indicating that the pan-Ras inhibitor is an appropriate candidate for medicinal chemistry efforts tailored at improving its currently unsatisfactory affinity.

20.
Biomolecules ; 10(11)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182807

RESUMO

RAS genes encode signaling proteins, which, in mammalian cells, act as molecular switches regulating critical cellular processes as proliferation, growth, differentiation, survival, motility, and metabolism in response to specific stimuli. Deregulation of Ras functions has a high impact on human health: gain-of-function point mutations in RAS genes are found in some developmental disorders and thirty percent of all human cancers, including the deadliest. For this reason, the pathogenic Ras variants represent important clinical targets against which to develop novel, effective, and possibly selective pharmacological inhibitors. Natural products represent a virtually unlimited resource of structurally different compounds from which one could draw on for this purpose, given the improvements in isolation and screening of active molecules from complex sources. After a summary of Ras proteins molecular and regulatory features and Ras-dependent pathways relevant for drug development, we point out the most promising inhibitory approaches, the known druggable sites of wild-type and oncogenic Ras mutants, and describe the known natural compounds capable of attenuating Ras signaling. Finally, we highlight critical issues and perspectives for the future selection of potential Ras inhibitors from natural sources.


Assuntos
Produtos Biológicos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Neoplasias/metabolismo , Proteínas ras/metabolismo , Animais , Produtos Biológicos/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA