Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34577300

RESUMO

Ultrasonic transducers are often used in the nuclear industry as sensors to monitor the health and process status of systems or the components. Some of the after-effects of the Fukushima Daiichi earthquake could have been eased if sensors had been in place inside the four reactors and sensed the overheating causing meltdown and steam explosions. The key element of ultrasonic sensors is the piezoelectric wafer, which is usually derived from lead-zirconate-titanate (Pb(Zr, Ti)O3, PZT). This material loses its piezoelectrical properties at a temperature of about 200 °C. It also undergoes nuclear transmutation. Bismuth titanate (Bi4Ti3O12, BiTi) has been considered as a potential candidate for replacing PZT at the middle of this temperature range, with many possible applications, since it has a Curie-Weiss temperature of about 650 °C. The aim of this article is to describe experimental details for operation in gamma and nuclear radiation concomitant with elevated temperatures and details of the performance of a BiTi sensor during and after irradiation testing. In these experiments, bismuth titanate has been demonstrated to operate up to a fast neutron fluence of 5 × 1020 n/cm2 and gamma radiation of 7.23 × 1021 (gamma/cm2). The results offer a perspective on the state-of the-art for a possible sensor for harsh environments of high temperature, Gamma radiation, and nuclear fluence.


Assuntos
Transdutores , Ultrassom , Bismuto , Cerâmica , Temperatura , Titânio
2.
Sensors (Basel) ; 19(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683921

RESUMO

In field applications currently used for health monitoring and nondestructive testing, ultrasonic transducers primarily employ PZT5-H as the piezoelectric element for ultrasound transmission and detection. This material has a Curie-Weiss temperature that limits its use to about 210 °C. Some industrial applications require much higher temperatures, i.e., 1000-1200 °C and possible nuclear radiation up to 1020 n/cm2 when performance is required in a reactor environment. The goal of this paper is the survey and review of piezoelectric elements for use in harsh environments for the ultimate purpose for structural health monitoring (SHM), non-destructive evaluation (NDE) and material characterization (NDMC). The survey comprises the following categories: 1. High-temperature applications with single crystals, thick-film ceramics, and composite ceramics, 2. Radiation-tolerant materials, and 3. Spray-on transducers for harsh-environment applications. In each category the known characteristics are listed, and examples are given of performance in harsh environments. Highlighting some examples, the performance of single-crystal lithium niobate wafers is demonstrated up to 1100 °C. The wafers with the C-direction normal to the wafer plane were mounted on steel cylinders with high-temperature Sauereisen and silver paste wire mountings and tested in air. In another example, the practical use in harsh radiation environments aluminum nitride (AlN) was found to be a good candidate operating well in two different nuclear reactors. The radiation hardness of AlN was evident from the unaltered piezoelectric coefficient after a fast and thermal neutron exposure in a nuclear reactor core (thermal flux = 2.12 × 1013 ncm-2; fast flux 2 (>1.0 MeV) = 4.05 × 1013 ncm-2; gamma dose rate: 1 × 109 r/h; temperature: 400-500 °C). Additionally, some of the high-temperature transducers are shown to be capable of mounting without requiring coupling material. Pulse-echo signal amplitudes (peak-to-peak) for the first two reflections as a function of the temperature for lithium niobate thick-film, spray-on transducers were observed to temperatures of about 900 °C. Guided-wave send-and-receive operation in the 2-4 MHz range was demonstrated on 2-3 mm thick Aluminum (6061) structures for possible field deployable applications where standard ultrasonic coupling media do not survive because of the harsh environment. This approach would benefit steam generators and steam pipes where temperatures are above 210 °C. In summary, there are several promising approaches to ultrasonic transducers for harsh environments and this paper presents a survey based on literature searches and in-house laboratory observations.

3.
Appl Opt ; 53(36): 8436-43, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25608191

RESUMO

In this work, we present an analysis of the influence of geometrical parameters on the sensitivity and linear range of a fiber optic angular displacement sensor, through computational simulations and experiments. The geometrical parameters analyzed are the lens focal length, the gap between fibers, the fiber cladding radii, the emitting fiber critical angle (or, equivalently, the emitting fiber numerical aperture), and the standoff distance (distance between the lens and the reflective surface). Besides, we analyze the sensor sensitivity regarding any spurious linear displacement. The simulation and experimental results show that the parameters that play the most important roles are the emitting fiber core radius, the lens focal length, and the light coupling efficiency, whereas the remaining parameters have little influence on the sensor characteristics.

4.
Artigo em Inglês | MEDLINE | ID: mdl-17703653

RESUMO

A mechanical scanning acoustic reflection microscope was applied to living cells (e.g., osteoblasts) to observe their undisguised shapes and to evaluate their adhesive conditions at a substrate interface. A conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. To characterize the cellular adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for 2 days, then assayed with the scanning acoustic reflection microscope. At 600 MHz the scanning acoustic reflection microscope clearly indicated that MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium had both an abnormal shape and poor adhesion at the substrate interface. The results are compared with those obtained with laser scanning confocal microscopy and are supported by a simple multilayer model.


Assuntos
Adesão Celular/fisiologia , Microscopia Acústica , Osteoblastos/ultraestrutura , Células Cultivadas , Meios de Cultivo Condicionados , Humanos , Microscopia Confocal
5.
Artigo em Inglês | MEDLINE | ID: mdl-24960710

RESUMO

For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for non-destructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminum-nitride- based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 x 10(18) neutron/cm(2) and 5.8 x 10(18) neutron/ cm(2), respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

6.
Artigo em Inglês | MEDLINE | ID: mdl-23357906

RESUMO

This paper develops a novel two-frequency approach for noninvasive evaluation of cancerous tissue with optimum depth and resolution. Frequencies of about 50 MHz are used in thickly sliced tissue to detect differences of the relative attenuation (C-scan mode scanning) with relatively limited resolution. Thus, suspect zones can be identified according to a quantitative criterion. These suspect zones are then selected for preparation of thin, transversal slices from within the original thick slices. Very-high-resolution (1-µm) visualization of cells is obtained at around 600 MHz on these transversal sections and adjacent sections are prepared for histological study in parallel. The technique's feasibility and potential are demonstrated on both normal and cancerous (melanoma) skin tissue. Isotropy of the specimens is experimentally verified to ensure that conditions were coherent for use of a 5-layer, angular spectrum model made to simulate longitudinal velocity, allowing estimation of longitudinal velocity from semiquantitative V(z) data.


Assuntos
Melanoma/patologia , Microscopia Acústica/métodos , Neoplasias Cutâneas/patologia , Pele/citologia , Histocitoquímica , Humanos , Melanoma/química , Melanoma/diagnóstico por imagem , Imagem Óptica , Pele/química , Pele/diagnóstico por imagem , Pele/patologia , Neoplasias Cutâneas/química , Neoplasias Cutâneas/diagnóstico por imagem
7.
J Appl Phys ; 111(12): 123510, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22807585

RESUMO

This article reports the design concept of a novel acoustic beam aperture modifier using butt-jointed gradient-index phononic crystals (GRIN PCs) consisting of steel cylinders embedded in a homogeneous epoxy background. By gradually tuning the period of a GRIN PC, the propagating direction of acoustic waves can be continuously bent to follow a sinusoidal trajectory in the structure. The aperture of an acoustic beam can therefore be shrunk or expanded through change of the gradient refractive index profiles of the butt-jointed GRIN PCs. Our computational results elucidate the effectiveness of the proposed acoustic beam aperture modifier. Such an acoustic device can be fabricated through a simple process and will be valuable in applications, such as biomedical imaging and surgery, nondestructive evaluation, communication, and acoustic absorbers.

8.
Artigo em Inglês | MEDLINE | ID: mdl-19574146

RESUMO

Up to now, biomedical imaging with ultrasound for observing a cellular tissue structure has been limited to very thinly sliced tissue at very high ultrasonic frequencies, i.e., 1 GHz. In this paper, we present the results of a systematic study to use a 150 to 200 MHz frequency range for thickly sliced biological tissue. A mechanical scanning reflection acoustic microscope (SAM) was used for obtaining horizontal cross-sectional images (C-scans) showing cellular structures. In the study, sectioned specimens of human breast cancer and tissues from the small intestine were prepared and examined. Some accessories for biomedical application were integrated into our SAM (Sonix HS-1000 and Olympus UH-3), which operated in pulse-wave and tone-burst wave modes, respectively. We found that the frequency 100 to 200 MHz provides optimal balance between resolution and penetration depth for examining the thickly sliced specimens. The images obtained with the lens focused at different depths revealed cellular structures whose morphology was very similar to that seen in the thinly sectioned specimens with optical and scanning acoustic microscopy. The SAM operation in the pulse-echo mode permits the imaging of tissue structure at the surface, and it also opens up the potential for attenuation imaging representing reflection from the substrate behind the thick specimen. We present such images of breast cancer proving the method's applicability to overall tumor detection. SAM with a high-frequency tone-burst ultrasonic wave reveals details of tissue structure, and both methods may serve as additional diagnostic tools in a hospital environment.


Assuntos
Diagnóstico por Imagem/métodos , Microscopia Acústica/métodos , Acústica , Mama/ultraestrutura , Neoplasias da Mama/ultraestrutura , Feminino , Técnicas Histológicas , Humanos , Intestino Delgado/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA