Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(4): 1041-1054, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27499020

RESUMO

We used clinical tissue from lethal metastatic castration-resistant prostate cancer (CRPC) patients obtained at rapid autopsy to evaluate diverse genomic, transcriptomic, and phosphoproteomic datasets for pathway analysis. Using Tied Diffusion through Interacting Events (TieDIE), we integrated differentially expressed master transcriptional regulators, functionally mutated genes, and differentially activated kinases in CRPC tissues to synthesize a robust signaling network consisting of druggable kinase pathways. Using MSigDB hallmark gene sets, six major signaling pathways with phosphorylation of several key residues were significantly enriched in CRPC tumors after incorporation of phosphoproteomic data. Individual autopsy profiles developed using these hallmarks revealed clinically relevant pathway information potentially suitable for patient stratification and targeted therapies in late stage prostate cancer. Here, we describe phosphorylation-based cancer hallmarks using integrated personalized signatures (pCHIPS) that shed light on the diversity of activated signaling pathways in metastatic CRPC while providing an integrative, pathway-based reference for drug prioritization in individual patients.


Assuntos
Fosfoproteínas/análise , Neoplasias de Próstata Resistentes à Castração/química , Proteoma/análise , Algoritmos , Humanos , Masculino , Medicina de Precisão , Neoplasias de Próstata Resistentes à Castração/metabolismo , Transdução de Sinais , Transcriptoma
2.
J Exp Bot ; 74(15): 4540-4558, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37155956

RESUMO

Acclimation to different light regimes is at the basis of survival for photosynthetic organisms, regardless of their evolutionary origin. Previous research efforts largely focused on acclimation events occurring at the level of the photosynthetic apparatus and often highlighted species-specific mechanisms. Here, we investigated the consequences of acclimation to different irradiances in Chlorella vulgaris, a green alga that is one of the most promising species for industrial application, focusing on both photosynthetic and mitochondrial activities. Moreover, proteomic analysis of cells acclimated to high light (HL) or low light (LL) allowed identification of the main targets of acclimation in terms of differentially expressed proteins. The results obtained demonstrate photosynthetic adaptation to HL versus LL that was only partially consistent with previous findings in Chlamydomonas reinhardtii, a model organism for green algae, but in many cases similar to vascular plant acclimation events. Increased mitochondrial respiration measured in HL-acclimated cells mainly relied on alternative oxidative pathway dissipating the excessive reducing power produced due to enhanced carbon flow. Finally, proteins involved in cell metabolism, intracellular transport, gene expression, and signaling-including a heliorhodopsin homolog-were identified as strongly differentially expressed in HL versus LL, suggesting their key roles in acclimation to different light regimes.


Assuntos
Chlorella vulgaris , Clorófitas , Luz , Chlorella vulgaris/metabolismo , Proteômica , Fotossíntese , Aclimatação , Plantas
3.
Toxicol Mech Methods ; 33(5): 401-410, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36482696

RESUMO

Background: Clozapine is an atypical antipsychotic drug used to treat treatment-resistant schizophrenia. Its side effects, including liver enzyme abnormalities, experienced by many patients preclude its more common use as a first-line therapy for schizophrenia. Toxicoproteomic approaches have been demonstrated to effectively guide the identification of toxicological mechanisms.Methods: To further our understanding of the molecular effects of clozapine, we performed a data-independent acquisition (DIA)-based quantitative proteomics investigation of clozapine-treated human liver spheroid cultures.Results: In total, we quantified 4479 proteins across the five treatment groups (vehicle; 15 µM, 30 µM, and 60 µM clozapine; and 10 ng/mL TNFα + IL-1ß). Clozapine (60 µM) treatment yielded 36 differentially expressed proteins (FDR < 0.05). Gene-set enrichment analysis indicated perturbation of several gene sets, including interferon gamma signaling (e.g. interferon gamma receptor 1) and prominent autophagy-related processes (e.g. upregulation of sequestosome-1 (SQSTM1), MAP1LC3B/LC3B2, GABARAPL2, and nuclear receptor coactivator 4). The effects of clozapine on autophagy were confirmed by targeted mass spectrometry and western blotting using conventional SQSTM1 and LC3B markers.Conclusions: Combined with prior literature, our work suggests a broad contribution of autophagy to both the therapeutic and side effects of clozapine. Overall, this study demonstrates how proteomics can contribute to the elucidation of physiological and toxicological mechanisms of drugs.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Clozapina/toxicidade , Clozapina/uso terapêutico , Proteína Sequestossoma-1 , Antipsicóticos/toxicidade , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/induzido quimicamente , Fígado
4.
Arch Toxicol ; 95(5): 1805-1829, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33963423

RESUMO

Cigarette smoking is the major cause of chronic obstructive pulmonary disease. Considerable attention has been paid to the reduced harm potential of nicotine-containing inhalable products such as electronic cigarettes (e-cigarettes). We investigated the effects of mainstream cigarette smoke (CS) and e-vapor aerosols (containing nicotine and flavor) generated by a capillary aerosol generator on emphysematous changes, lung function, and molecular alterations in the respiratory system of female Apoe-/- mice. Mice were exposed daily (3 h/day, 5 days/week) for 6 months to aerosols from three different e-vapor formulations-(1) carrier (propylene glycol and vegetable glycerol), (2) base (carrier and nicotine), or (3) test (base and flavor)-or to CS from 3R4F reference cigarettes. The CS and base/test aerosol concentrations were matched at 35 µg nicotine/L. CS exposure, but not e-vapor exposure, led to impairment of lung function (pressure-volume loop area, A and K parameters, quasi-static elastance and compliance) and caused marked lung inflammation and emphysematous changes, which were confirmed histopathologically and morphometrically. CS exposure caused lung transcriptome (activation of oxidative stress and inflammatory responses), lipidome, and proteome dysregulation and changes in DNA methylation; in contrast, these effects were substantially reduced in response to the e-vapor aerosol exposure. Compared with sham, aerosol exposure (carrier, base, and test) caused a slight impact on lung inflammation and epithelia irritation. Our results demonstrated that, in comparison with CS, e-vapor aerosols induced substantially lower biological and pathological changes in the respiratory tract associated with chronic inflammation and emphysema.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotiana/toxicidade , Fumaça , Aerossóis , Animais , Apolipoproteínas E/metabolismo , Feminino , Exposição por Inalação , Pulmão , Camundongos , Nicotina , Testes de Função Respiratória , Fumar , Produtos do Tabaco , Transcriptoma
5.
J Appl Toxicol ; 41(10): 1598-1619, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33825214

RESUMO

Cigarette smoking is one major modifiable risk factor in the development and progression of chronic obstructive pulmonary disease and cardiovascular disease. To characterize and compare cigarette smoke (CS)-induced disease endpoints after exposure in either whole-body (WB) or nose-only (NO) exposure systems, we exposed apolipoprotein E-deficient mice to filtered air (Sham) or to the same total particulate matter (TPM) concentration of mainstream smoke from 3R4F reference cigarettes in NO or WB exposure chambers (EC) for 2 months. At matching TPM concentrations, we observed similar concentrations of carbon monoxide, acetaldehyde, and acrolein, but higher concentrations of nicotine and formaldehyde in NOEC than in WBEC. In both exposure systems, CS exposure led to the expected adaptive changes in nasal epithelia, altered lung function, lung inflammation, and pronounced changes in the nasal epithelial transcriptome and lung proteome. Exposure in the NOEC caused generally more severe histopathological changes in the nasal epithelia and a higher stress response as indicated by body weight decrease and lower blood lymphocyte counts compared with WB exposed mice. Erythropoiesis, and increases in total plasma triglyceride levels and atherosclerotic plaque area were observed only in CS-exposed mice in the WBEC group but not in the NOEC group. Although the composition of CS in the breathing zone is not completely comparable in the two exposure systems, the CS-induced respiratory disease endpoints were largely confirmed in both systems, with a higher magnitude of severity after NO exposure. CS-accelerated atherosclerosis and other pro-atherosclerotic factors were only significant in WBEC.


Assuntos
Absorção Fisiológica , Apolipoproteínas/efeitos dos fármacos , Apolipoproteínas/metabolismo , Doenças Cardiovasculares/induzido quimicamente , Fumar Cigarros/efeitos adversos , Exposição por Inalação , Pneumopatias/induzido quimicamente , Fumaça/efeitos adversos , Animais , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Pneumopatias/fisiopatologia , Masculino , Camundongos
6.
Am J Physiol Heart Circ Physiol ; 318(3): H604-H631, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31975625

RESUMO

Smoking cigarettes is harmful to the cardiovascular system. Considerable attention has been paid to the reduced harm potential of alternative nicotine-containing inhalable products such as e-cigarettes. We investigated the effects of E-vapor aerosols or cigarette smoke (CS) on atherosclerosis progression, cardiovascular function, and molecular changes in the heart and aorta of female apolipoprotein E-deficient (ApoE-/-) mice. The mice were exposed to aerosols from three different E-vapor formulations: 1) carrier (propylene glycol and vegetable glycerol), 2) base (carrier and nicotine), or 3) test (base and flavor) or to CS from 3R4F reference cigarettes for up to 6 mo. Concentrations of CS and base or test aerosols were matched at 35 µg nicotine/L. Exposure to CS, compared with sham-exposed fresh air controls, accelerated atherosclerotic plaque formation, whereas no such effect was seen for any of the three E-vapor aerosols. Molecular changes indicated disease mechanisms related to oxidative stress and inflammation in general, plus changes in calcium regulation, and altered cytoskeletal organization and microtubule dynamics in the left ventricle. While ejection fraction, fractional shortening, cardiac output, and isovolumic contraction time remained unchanged following E-vapor aerosols exposure, the nicotine-containing base and test aerosols caused an increase in isovolumic relaxation time similar to CS. A nicotine-related increase in pulse wave velocity and arterial stiffness was also observed, but it was significantly lower for base and test aerosols than for CS. These results demonstrate that in comparison with CS, E-vapor aerosols induce substantially lower biological responses associated with smoking-related cardiovascular diseases.NEW & NOTEWORTHY Analysis of key urinary oxidative stress markers and proinflammatory cytokines showed an absence of oxidative stress and inflammation in the animals exposed to E-vapor aerosols. Conversely, animals exposed to conventional cigarette smoke had high urinary levels of these markers. When compared with conventional cigarette smoke, E-vapor aerosols induced smaller atherosclerotic plaque surface area and volume. Systolic and diastolic cardiac function, as well as endothelial function, were further significantly less affected by electronic cigarette aerosols than conventional cigarette smoke. Molecular analysis demonstrated that E-vapor aerosols induce significantly smaller transcriptomic dysregulation in the heart and aorta compared with conventional cigarette smoke.


Assuntos
Aerossóis/toxicidade , Aterosclerose/etiologia , Doenças Cardiovasculares/etiologia , Vapor do Cigarro Eletrônico/toxicidade , Coração/efeitos dos fármacos , Fumaça/efeitos adversos , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Progressão da Doença , Feminino , Exposição por Inalação , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos
7.
Arch Toxicol ; 94(6): 2179-2206, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367274

RESUMO

The use of flavoring substances is an important element in the development of reduced-risk products for adult smokers to increase product acceptance and encourage switching from cigarettes. In a first step towards characterizing the sub-chronic inhalation toxicity of neat flavoring substances, a study was conducted using a mixture of the substances in a base solution of e-liquid, where the standard toxicological endpoints of the nebulized aerosols were supplemented with transcriptomics analysis. The flavor mixture was produced by grouping 178 flavors into 26 distinct chemical groups based on structural similarities and potential metabolic and biological effects. Flavoring substances predicted to show the highest toxicological effect from each group were selected as the flavor group representatives (FGR). Following Organization for Economic Cooperation and Development Testing Guideline 413, rats were exposed to three concentrations of the FGR mixture in an e-liquid composed of nicotine (23 µg/L), propylene glycol (1520 µg/L), and vegetable glycerin (1890 µg/L), while non-flavored and no-nicotine mixtures were included as references to identify potential additive or synergistic effects between nicotine and the flavoring substances. The results indicated that the inhalation of an e-liquid containing the mixture of FGRs caused very minimal local and systemic toxic effects. In particular, there were no remarkable clinical (in-life) observations in flavored e-liquid-exposed rats. The biological effects related to exposure to the mixture of neat FGRs were limited and mainly nicotine-mediated, including changes in hematological and blood chemistry parameters and organ weight. These results indicate no significant additive biological changes following inhalation exposure to the nebulized FGR mixture above the nicotine effects measured in this sub-chronic inhalation study. In a subsequent study, e-liquids with FGR mixtures will be aerosolized by thermal treatment and assessed for toxicity.


Assuntos
Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Vaping/efeitos adversos , Animais , Biomarcadores/sangue , Qualidade de Produtos para o Consumidor , Feminino , Exposição por Inalação , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Sprague-Dawley , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Medição de Risco , Fatores de Tempo , Testes de Toxicidade
8.
Arch Toxicol ; 94(6): 2163-2177, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32409933

RESUMO

Cigarette smoke (CS) exposure is one of the leading risk factors for human health. Nicotine-containing inhalable products, such as e-cigarettes, can effectively support tobacco harm reduction approaches. However, there are limited comparative data on the effects of the aerosols generated from electronic vapor products (e-vapor) and CS on bone. Here, we report the effects of e-vapor aerosols and CS on bone morphology, structure, and strength in a 6-month inhalation study. Eight-week-old ApoE-/- mice were exposed to aerosols from three different e-vapor formulations-CARRIER (propylene glycol and vegetable glycerol), BASE (CARRIER and nicotine), TEST (BASE and flavor)-to CS from 3R4F reference cigarettes at matched nicotine concentrations (35 µg/L) or to fresh air (Sham) (N = 10 per group). Tibiae were analyzed for bone morphology by µCT imaging, biomechanics by three-point bending, and by histological analysis. CS inhalation caused a significant decrease in cortical and total bone volume fraction and bone density relative to e-vapor aerosols. Additionally, CS exposure caused a decrease in ultimate load and stiffness. In contrast, bone structural and biomechanical parameters were not significantly affected by e-vapor aerosol or Sham exposure. At the dissection time point, there was no significant difference in body weight or tibia bone weight or length among the groups. Histological findings revealed microcracks in cortical bone areas among all exposed groups compared to Sham control. In conclusion, because of the bone-preserving effect of e-vapor aerosols relative to CS exposure, e-vapor products could potentially constitute less harmful alternatives to cigarettes in situations in which bone health is of importance.


Assuntos
Osso e Ossos/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Fumaça/efeitos adversos , Vaping/efeitos adversos , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Feminino , Exposição por Inalação , Camundongos Knockout para ApoE , Fatores de Tempo , Microtomografia por Raio-X
9.
Inhal Toxicol ; 30(13-14): 553-567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30849254

RESUMO

We compared early biological changes in mice after inhalation exposures to cigarette smoke or e-vapor aerosols (MarkTen® cartridge with Carrier, Test-1, or Test-2 formulations; 4% nicotine). Female C57BL/6 mice were exposed to 3R4F cigarette smoke or e-vapor aerosols by nose-only inhalation for up to 4 hours/day, 5 days/week, for 3 weeks. The 3R4F and e-vapor exposures were set to match the target nose port aerosol nicotine concentration (∼41 µg/L). Only the 3R4F group showed postexposure clinical signs such as tremors and lethargy. At necropsy, the 3R4F group had significant increases in lung weight and changes in bronchoalveolar lavage parameters, as well as microscopic findings in the respiratory tract. The e-vapor groups had minimal microscopic changes, including squamous metaplasia in laryngeal epiglottis, and histiocytic infiltrates in the lung (Test-2 group only). The 3R4F group had a higher incidence and severity of microscopic findings compared to any e-vapor group. Transcriptomic analysis also showed that the 3R4F group had the highest number of differentially expressed genes compared to Sham Control. Among e-vapor groups, Test-2 group had more differentially expressed genes but the magnitude of gene expression-based network perturbations in all e-vapor groups was ∼94% less than the 3R4F group. On proteome analysis in the lung, differentially regulated proteins were detected in the 3R4F group only. In conclusion, 3-weeks of 3R4F exposure induced molecular and microscopic changes associated with smoking-related diseases in the respiratory tract, while e-vapor exposures showed substantially reduced biological activities.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Sistema Respiratório/efeitos dos fármacos , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Administração por Inalação , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Carboxihemoglobina/análise , Feminino , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Testes de Função Respiratória , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia
10.
Int J Mol Sci ; 19(9)2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223557

RESUMO

Inflammatory bowel disease (IBD) represents a group of progressive disorders characterized by recurrent chronic inflammation of the gut. Ulcerative colitis and Crohn's disease are the major manifestations of IBD. While our understanding of IBD has progressed in recent years, its etiology is far from being fully understood, resulting in suboptimal treatment options. Complementing other biological endpoints, bioanalytical "omics" methods that quantify many biomolecules simultaneously have great potential in the dissection of the complex pathogenesis of IBD. In this review, we focus on the rapidly evolving proteomics and lipidomics technologies and their broad applicability to IBD studies; these range from investigations of immune-regulatory mechanisms and biomarker discovery to studies dissecting host⁻microbiome interactions and the role of intestinal epithelial cells. Future studies can leverage recent advances, including improved analytical methodologies, additional relevant sample types, and integrative multi-omics analyses. Proteomics and lipidomics could effectively accelerate the development of novel targeted treatments and the discovery of complementary biomarkers, enabling continuous monitoring of the treatment response of individual patients; this may allow further refinement of treatment and, ultimately, facilitate a personalized medicine approach to IBD.


Assuntos
Biomarcadores , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Metabolismo dos Lipídeos , Metaboloma , Proteoma , Pesquisa , Animais , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/terapia , Medicina de Precisão
11.
Nature ; 480(7377): 387-90, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22113612

RESUMO

Activated RAS promotes dimerization of members of the RAF kinase family. ATP-competitive RAF inhibitors activate ERK signalling by transactivating RAF dimers. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumour-specific inhibition of ERK signalling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbour mutant BRAF(V600E). However, resistance invariably develops. Here, we identify a new resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61-kDa variant form of BRAF(V600E), p61BRAF(V600E), which lacks exons 4-8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) shows enhanced dimerization in cells with low levels of RAS activation, as compared to full-length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signalling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumours of six of nineteen patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signalling by RAF inhibitors is dependent on levels of RAS-GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner.


Assuntos
Processamento Alternativo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Multimerização Proteica/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Éxons/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/enzimologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/química , Sulfonamidas/farmacologia , Vemurafenib
12.
Inhal Toxicol ; 28(5): 226-40, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27027324

RESUMO

The liver is one of the most important organs involved in elimination of xenobiotic and potentially toxic substances. Cigarette smoke (CS) contains more than 7000 chemicals, including those that exert biological effects and cause smoking-related diseases. Though CS is not directly hepatotoxic, a growing body of evidence suggests that it may exacerbate pre-existing chronic liver disease. In this study, we integrated toxicological endpoints with molecular measurements and computational analyses to investigate effects of exposures on the livers of Apoe(-/- )mice. Mice were exposed to 3R4F reference CS, to an aerosol from the Tobacco Heating System (THS) 2.2, a candidate modified risk tobacco product (MRTP) or to filtered air (Sham) for up to 8 months. THS2.2 takes advantage of a "heat-not-burn" technology that, by heating tobacco, avoids pyrogenesis and pyrosynthesis. After CS exposure for 2 months, some groups were either switched to the MRTP or filtered air. While no group showed clear signs of hepatotoxicity, integrative analysis of proteomics and transcriptomics data showed a CS-dependent impairment of specific biological networks. These networks included lipid and xenobiotic metabolism and iron homeostasis that likely contributed synergistically to exacerbating oxidative stress. In contrast, most proteomic and transcriptomic changes were lower in mice exposed to THS2.2 and in the cessation and switching groups compared to the CS group. Our findings elucidate the complex biological responses of the liver to CS exposure. Furthermore, they provide evidence that THS2.2 aerosol has reduced biological effects, as compared with CS, on the livers of Apoe(-/- )mice.


Assuntos
Fígado/efeitos dos fármacos , Nicotiana/toxicidade , Fumaça , Produtos do Tabaco/toxicidade , Animais , Apolipoproteínas E/genética , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Camundongos Knockout , Proteômica , Risco , Abandono do Hábito de Fumar
13.
Regul Toxicol Pharmacol ; 81 Suppl 2: S123-S138, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27818347

RESUMO

Modified risk tobacco products (MRTPs) are being developed with the aim of reducing smoking-related health risks. The Tobacco Heating System 2.2 (THS2.2) is a candidate MRTP that uses the heat-not-burn principle. Here, systems toxicology approaches were engaged to assess the respiratory effects of mentholated THS2.2 (THS2.2M) in a 90-day rat inhalation study (OECD test guideline 413). The standard endpoints were complemented by transcriptomics and quantitative proteomics analyses of respiratory nasal epithelium and lung tissue and by lipidomics analysis of lung tissue. The adaptive response of the respiratory nasal epithelium to conventional cigarette smoke (CS) included squamous cell metaplasia and an inflammatory response, with high correspondence between the molecular and histopathological results. In contrast to CS exposure, the adaptive tissue and molecular changes to THS2.2M aerosol exposure were much weaker and were limited mostly to the highest THS2.2M concentration in female rats. In the lung, CS exposure induced an inflammatory response, triggered cellular stress responses, and affected sphingolipid metabolism. These responses were not observed or were much lower after THS2.2M aerosol exposure. Overall, this system toxicology analysis complements and reconfirms the results from classical toxicological endpoints and further suggests potentially reduced health risks of THS2.2M.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Mentol/toxicidade , Fumaça/efeitos adversos , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta a Droga , Desenho de Equipamento , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Mentol/análise , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , Pneumonia/prevenção & controle , Proteômica , Ratos Sprague-Dawley , Medição de Risco , Fumaça/análise , Fumar/genética , Biologia de Sistemas , Fatores de Tempo , Produtos do Tabaco/análise , Toxicogenética , Transcriptoma/efeitos dos fármacos
14.
Regul Toxicol Pharmacol ; 81 Suppl 2: S93-S122, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27818348

RESUMO

The toxicity of a mentholated version of the Tobacco Heating System (THS2.2M), a candidate modified risk tobacco product (MRTP), was characterized in a 90-day OECD inhalation study. Differential gene and protein expression analysis of nasal epithelium and lung tissue was also performed to record exposure effects at the molecular level. Rats were exposed to filtered air (sham), to THS2.2M (at 15, 23 and 50 µg nicotine/l), to two mentholated reference cigarettes (MRC) (at 23 µg nicotine/l), or to the 3R4F reference cigarette (at 23 µg nicotine/l). MRCs were designed to meet 3R4F specifications. Test atmosphere analyses demonstrated that aldehydes were reduced by 75%-90% and carbon monoxide by 98% in THS2.2M aerosol compared with MRC smoke; aerosol uptake was confirmed by carboxyhemoglobin and menthol concentrations in blood, and by the quantities of urinary nicotine metabolites. Systemic toxicity and alterations in the respiratory tract were significantly lower in THS2.2M-exposed rats compared with MRC and 3R4F. Pulmonary inflammation and the magnitude of the changes in gene and protein expression were also dramatically lower after THS2.2M exposure compared with MRCs and 3R4F. No menthol-related effects were observed after MRC mainstream smoke-exposure compared with 3R4F.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Mentol/toxicidade , Fumaça/efeitos adversos , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Biomarcadores/sangue , Biomarcadores/urina , Biologia Computacional , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta a Droga , Desenho de Equipamento , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Genômica , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Mentol/análise , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Ratos Sprague-Dawley , Medição de Risco , Fumaça/análise , Fumar/sangue , Fumar/genética , Fumar/urina , Fatores de Tempo , Produtos do Tabaco/análise , Toxicogenética , Transcriptoma/efeitos dos fármacos
15.
Int J Mol Sci ; 17(9)2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27657052

RESUMO

Smoking is a major risk factor for several diseases including chronic obstructive pulmonary disease (COPD). To better understand the systemic effects of cigarette smoke exposure and mild to moderate COPD-and to support future biomarker development-we profiled the serum lipidomes of healthy smokers, smokers with mild to moderate COPD (GOLD stages 1 and 2), former smokers, and never-smokers (n = 40 per group) (ClinicalTrials.gov registration: NCT01780298). Serum lipidome profiling was conducted with untargeted and targeted mass spectrometry-based lipidomics. Guided by weighted lipid co-expression network analysis, we identified three main trends comparing smokers, especially those with COPD, with non-smokers: a general increase in glycero(phospho)lipids, including triglycerols; changes in fatty acid desaturation (decrease in ω-3 polyunsaturated fatty acids, and an increase in monounsaturated fatty acids); and an imbalance in eicosanoids (increase in 11,12- and 14,15-DHETs (dihydroxyeicosatrienoic acids), and a decrease in 9- and 13-HODEs (hydroxyoctadecadienoic acids)). The lipidome profiles supported classification of study subjects as smokers or non-smokers, but were not sufficient to distinguish between smokers with and without COPD. Overall, our study yielded further insights into the complex interplay between smoke exposure, lung disease, and systemic alterations in serum lipid profiles.

16.
Mol Cancer ; 14: 27, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25645078

RESUMO

BACKGROUND: Approximately 20% of melanomas contain a mutation in NRAS. However no direct inhibitor of NRAS is available. One of the main signaling pathways downstream of NRAS is the MAPK pathway. In this study we investigated the possibility of blocking oncogenic signaling of NRAS by inhibiting two signaling points in the MAPK pathway. METHODS: Fourteen NRAS mutated human melanoma cell lines were treated with a pan-RAF inhibitor (PRi, Amgen Compd A), a MEK inhibitor (MEKi, trametinib) or their combination and the effects on proliferation, cell cycle progression, apoptosis, transcription profile and signaling of the cells were investigated. RESULTS: The majority of the cell lines showed a significant growth inhibition, with high levels of synergism of the PRi and MEKi combination. Sensitive cell lines showed induction of apoptosis by the combination treatment and there was a correlation between p-MEK levels and synergistic effect of the combination treatment. Proliferation of sensitive cell lines was blocked by the inhibition of the MAPK pathway, which also blocked expression of cyclin D1. However, in resistant cell lines, proliferation was blocked by combined inhibition of the MAPK pathway and cyclin D3, which is not regulated by the MAPK pathway. Resistant cell lines also showed higher levels of p-GSK3ß and less perturbation of the apoptotic profile upon the treatment in comparison with the sensitive cell lines. CONCLUSIONS: The combination of PRi + MEKi can be an effective regimen for blocking proliferation of NRAS mutant melanomas when there is higher activity of the MAPK pathway and dependence of proliferation and survival on this pathway.


Assuntos
GTP Fosfo-Hidrolases/genética , Sistema de Sinalização das MAP Quinases/genética , Melanoma/genética , Proteínas de Membrana/genética , Mutação/genética , Quinases raf/genética , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D3/genética , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Transdução de Sinais/genética , Transcrição Gênica/genética
17.
Sci Rep ; 14(1): 4286, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383592

RESUMO

Cigarette smoking is a major preventable cause of morbidity and mortality. While quitting smoking is the best option, switching from cigarettes to non-combustible alternatives (NCAs) such as e-vapor products is a viable harm reduction approach for smokers who would otherwise continue to smoke. A key challenge for the clinical assessment of NCAs is that self-reported product use can be unreliable, compromising the proper evaluation of their risk reduction potential. In this cross-sectional study of 205 healthy volunteers, we combined comprehensive exposure characterization with in-depth multi-omics profiling to compare effects across four study groups: cigarette smokers (CS), e-vapor users (EV), former smokers (FS), and never smokers (NS). Multi-omics analyses included metabolomics, transcriptomics, DNA methylomics, proteomics, and lipidomics. Comparison of the molecular effects between CS and NS recapitulated several previous observations, such as increased inflammatory markers in CS. Generally, FS and EV demonstrated intermediate molecular effects between the NS and CS groups. Stratification of the FS and EV by combustion exposure markers suggested that this position on the spectrum between CS and NS was partially driven by non-compliance/dual use. Overall, this study highlights the importance of in-depth exposure characterization before biological effect characterization for any NCA assessment study.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Expossoma , Abandono do Hábito de Fumar , Produtos do Tabaco , Vaping , Humanos , Estudos Transversais , Multiômica
18.
Transl Vis Sci Technol ; 12(11): 9, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930665

RESUMO

Purpose: To further establish aqueous humor (AH) as a clinically suitable source of protein biomarkers in retinal diseases by evaluating the correlation of a large panel of proteins between AH, vitreous humor (VH), and serum (SE). Methods: We enrolled 60 subjects (eyes) with various non-infectious retinal diseases. AH, VH, and SE proteins were analyzed using the Olink Target 96 platform (1196 protein assays in total). We compared these three matrices in terms of quantification overlap, principal component analysis, and correlation. Results: In the AH, VH, and SE samples, 841, 917, and 1133 proteins, respectively, were consistently quantified above the limit of detection in more than 30% of patients. AH and VH shared 812 of these proteins. AH and VH samples overlapped along principal component 1, but SE samples were distinct. We identified 490 proteins with significant (false discovery rate [FDR]-adjusted P < 0.05) and relevant correlations (correlation coefficient > 0.5) between AH and VH, compared to only 33 and 40 proteins for VH and SE and for AH and SE, respectively. Conclusions: Due to a close correlation between protein concentrations in the AH and VH and a clear difference from the SE, AH has the potential to serve as a substitute for VH and may hold significance in identifying protein biomarkers and novel targets related to retinal diseases. Translational Relevance: This study further supports AH as a clinically suitable source of protein biomarkers in retinal diseases. In addition, the identified AH and VH correlations can inform the selection of protein biomarker candidates in future translational research.


Assuntos
Proteínas Sanguíneas , Doenças Retinianas , Humanos , Doenças Retinianas/diagnóstico , Humor Aquoso , Retina , Biomarcadores
19.
Eur J Pharm Sci ; 180: 106321, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336278

RESUMO

Absorption of inhaled compounds can occur from multiple sites based on upper and lower respiratory tract deposition, and clearance mechanisms leading to differential local and systemic pharmacokinetics. Deriving inhaled aerosol dosimetry and local tissue concentrations for nose-only exposure in rodents and inhaled products in humans is challenging. In this study we use inhaled nicotine as an example to identify regional respiratory tract deposition, absorption fractions, and their contribution toward systemic pharmacokinetics in rodents and humans. A physiologically based pharmacokinetic (PBPK) model was constructed to describe the disposition of nicotine and its major metabolite, cotinine. The model description for the lungs was simplified to include an upper respiratory tract region with active mucociliary clearance and a lower respiratory tract region. The PBPK model parameters such as rate of oral absorption, metabolism and clearance were fitted to the published nicotine and cotinine plasma concentrations post systemic administration and oral dosing. The fractional deposition of inhaled aerosol in the upper and lower respiratory tract regions was estimated by fitting the plasma concentrations. The model predicted upper respiratory tract deposition was 63.9% for nose-only exposure to nicotine containing nebulized aqueous aerosol in rats and 60.2% for orally inhaled electronic vapor product in humans. A marked absorption of nicotine from the upper respiratory tract and the gastrointestinal tract for inhaled aqueous aerosol contributed to the differential systemic pharmacokinetics in rats and humans. The PBPK model derived dosimetry shows that the current aerosol dosimetry models with their posteriori application using independent aerosol physicochemical characterization to predict aerosol deposition are insufficient and will need to consider complex interplay of inhaled aerosol evolutionary process. While the study highlights the needs for future research, it provides a preliminary framework for interpreting pharmacokinetics of inhaled aerosols to facilitate the analysis of in vivo exposure-responses for pharmacological and toxicological assessments.


Assuntos
Pulmão , Nicotina , Humanos , Ratos , Animais , Administração por Inalação , Aerossóis/química , Pulmão/metabolismo , Cinética , Modelos Biológicos
20.
Bioengineering (Basel) ; 9(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36290484

RESUMO

There is a lack of physiologically relevant in vitro human kidney models for disease modelling and detecting drug-induced effects given the limited choice of cells and difficulty implementing quasi-physiological culture conditions. We investigated the influence of fluid shear stress on primary human renal proximal tubule epithelial cells (RPTECs) cultured in the micro-physiological Vitrofluid device. This system houses cells seeded on semipermeable membranes and can be connected to a regulable pump that enables controlled, unidirectional flow. After 7 days in culture, RPTECs maintained physiological characteristics such as barrier integrity, protein uptake ability, and expression of specific transporters (e.g., aquaporin-1). Exposure to constant apical side flow did not cause cytotoxicity, cell detachment, or intracellular reactive oxygen species accumulation. However, unidirectional flow profoundly affected cell morphology and led to primary cilia lengthening and alignment in the flow direction. The dynamic conditions also reduced cell proliferation, altered plasma membrane leakiness, increased cytokine secretion, and repressed histone deacetylase 6 and kidney injury molecule 1 expression. Cells under flow also remained susceptible to colistin-induced toxicity. Collectively, the results suggest that dynamic culture conditions in the Vitrofluid system promote a more differentiated phenotype in primary human RPTECs and represent an improved in vitro kidney model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA