Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Infect Dis ; 22(1): 133, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135496

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections lead to acute- and chronic Long COVID (LC) symptoms. However, few studies have addressed LC sequelae on brain functions. This study was aimed to examine if acute symptoms of coronavirus disease 2019 (COVID-19) would persist during LC, and if memory problems would be correlated with sleep, depressive mood, or anxious complaints. METHODS: Our work followed a cohort of 236 patients from two public hospitals of the Federal District in mid-western Brazil. Patients' interviews checked for clinical symptoms during acute and LC (5-8 months after real-time reverse transcription polymerase chain reaction, RT-qPCR). RESULTS: Most cases were non-hospitalized individuals (86.3%) with a median age of 41.2 years. While myalgia (50%), hyposmia (48.3%), and dysgeusia (45.8%) were prevalent symptoms in acute phase, fatigue (21.6%) followed by headache (19.1%) and myalgia (16.1%) commonly occurred during LC. In LC, 39.8% of individuals reported memory complaints, 36.9% felt anxious, 44.9% felt depressed, and 45.8% had sleep problems. Furthermore, memory complaints were associated with sleep problems (adjusted OR 3.206; 95% CI 1.723-6.030) and depressive feelings (adjusted OR 3.981; 95% CI 2.068-7.815). CONCLUSIONS: The SARS-CoV-2 infection leads to persistent symptoms during LC, in which memory problems may be associated with sleep and depressive complaints.


Assuntos
COVID-19 , Saúde Mental , Adulto , Ansiedade , Brasil/epidemiologia , COVID-19/complicações , COVID-19/psicologia , Depressão , Humanos , Memória , Síndrome de COVID-19 Pós-Aguda
2.
Neurochem Res ; 43(11): 2132-2140, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30267378

RESUMO

Parkinson's disease (PD) is a highly complex brain disorder regarding clinical presentation, pathogenesis, and therapeutics. The cardinal motor signs, i.e., rigidity, bradykinesia, and unilateral tremors, arise in consequence of a progressive neuron death during the prodromal phase. Although multiple transmission systems are involved in disease neurobiology, patients will cross the line between the prodromal and early stage of diagnosed PD when they had lost half of the dopaminergic nigrostriatal cells. As the neurons continue to die ascending the neuroaxis, patients will face a more disabling disease with motor and nonmotor signs. Shedding light on molecular mechanisms of neuron death is an urgent need for understanding PD pathogenesis and projecting therapeutics. This work examined the expression of microRNAs in the striatum of parkinsonian rats chronically exposed to rotenone (2.5 mg/Kg, i.p., daily for 10 days). Rotenone caused motor deficits, the loss of TH(+) cells in the nigrostriatal pathway, and a marked microgliosis. This parkinsonian rat striatum was examined at 26 days after the last rotenone injection, for quantification of microRNAs, miR-7, miR-34a, miR-26a, miR-132, miR-382, and Let7a, by qPCR. Parkinsonian rats presented a significant increase in miR-26a and miR-34a (1.5 and 2.2 fold, respectively, P < 0.05), while miR-7 (0.5 fold, P < 0.05) and Let7a were downregulated. This work reports for first time microRNAs aberrantly expressed in the striatum of rotenone-induced parkinsonian rats, suggesting that this dysregulation may contribute to PD pathogenesis. Beyond revealing new clues of neurodegeneration, our findings might prime further studies targeting miRNAs for neuroprotection or even for diagnosis proposal.


Assuntos
Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , MicroRNAs/metabolismo , Neostriado/efeitos dos fármacos , Substância Negra/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , MicroRNAs/efeitos dos fármacos , Neostriado/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , Ratos Wistar , Rotenona/farmacologia , Substância Negra/efeitos dos fármacos
3.
Pharm Res ; 35(3): 53, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29417239

RESUMO

The published article contains an error in Figure 5. The term "Atu027" should be substituted by "Patisiran" in figure and legend.

4.
Molecules ; 23(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30041414

RESUMO

MicroRNAs (miRNAs) regulate gene expression at posttranscriptional level by triggering RNA interference. In such a sense, aberrant expressions of miRNAs play critical roles in the pathogenesis of many disorders, including Parkinson's disease (PD). Controlling the level of specific miRNAs in the brain is thus a promising therapeutic strategy for neuroprotection. A fundamental need for miRNA regulation (either replacing or inhibition) is a carrier capable of delivering oligonucleotides into brain cells. This study aimed to examine a polymeric magnetic particle, Neuromag®, for delivery of synthetic miRNA inhibitors in the rat central nervous system. We injected the miRNA inhibitor complexed with Neuromag® into the lateral ventricles next to the striatum, by stereotaxic surgery. Neuromag efficiently delivered oligonucleotides in the striatum and septum areas, as shown by microscopy imaging of fluorescein isothiocyanate (FITC)-labeled oligos in astrocytes and neurons. Transfected oligos showed efficacy concerning miRNA inhibition. Neuromag®-structured miR-134 antimiR (0.36 nmol) caused a significant 0.35 fold decrease of striatal miR-134, as revealed by real-time quantitative polymerase chain reaction (RT-qPCR). In conclusion, the polymeric magnetic particle Neuromag® efficiently delivered functional miRNA inhibitors in brain regions surrounding lateral ventricles, particularly the striatum. This delivery system holds potential as a promising miRNA-based disease-modifying drug and merits further pre-clinical studies using animal models of PD.


Assuntos
Corpo Estriado/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Oligonucleotídeos/genética , Interferência de RNA , Animais , Imunofluorescência , Inativação Gênica , Técnicas de Transferência de Genes , Oligonucleotídeos/administração & dosagem , Ratos , Transfecção/métodos
5.
Pharm Res ; 34(7): 1339-1363, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28389707

RESUMO

Ten years after Fire and Melo's Nobel Prize for discovery of gene silencing by double-stranded RNA, a remarkable progress was achieved in RNA interference (RNAi). Changes in the chemical structure of synthetic oligonucleotides make them more stable and specific, and new delivery strategies became progressively available. The attention of pharmaceutical industry rapidly turned to RNAi, as an opportunity to explore new drug targets. This review addresses nine small-interfering RNAs (siRNAs) and one unique microRNA (miRNA) inhibitor, which entered the phase 2-3 clinical trials. The siRNAs in focus are PF-04523655, TKM-080301, Atu027, SYL040012, SYL1001, siG12D-LODER (phase 2), QPI-1002, QPI-1007, and patisiran (phase 3). Regarding miRNAs, their content can be down- or up-regulated, by using miRNA inhibitors (AntimiRs) or miRNA mimics. Miravirsen is an AntimiR-122 for hepatitis C virus infection. The flexibility of RNAi technology is easily understood taking into account: (i) the different drug targets (i.e. p53, caspase 2, PKN3, ß2-adrenergic receptor, mutated KRAS, microRNAs); (ii) therapeutic conditions, including ophthalmic diseases, kidney injury, amyloidosis, pancreatic cancer, viral hepatitis; and (iii) routes of administration (ocular, intravenous, subcutaneous, intratumoral). Although some issues are still matters of concern (delivery, toxicity, cost, and biological barriers), RNAi definitively opens a wide avenue for drug development.


Assuntos
MicroRNAs/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Humanos , Mimetismo Molecular , Oligodesoxirribonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/química
6.
BMC Cancer ; 16: 72, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26856327

RESUMO

BACKGROUND: Glioblastoma multiforme is the most aggressive brain tumor. Microglia are prominent cells within glioma tissue and play important roles in tumor biology. This work presents an animal model designed for the study of microglial cell morphology in situ during gliomagenesis. It also allows a quantitative morphometrical analysis of microglial cells during their activation by glioma cells. METHODS: The animal model associates the following cell types: 1- mCherry red fluorescent GL261 glioma cells and; 2- EGFP fluorescent microglia, present in the TgH(CX3CR1-EGFP) mouse line. First, mCherry-GL261 glioma cells were implanted in the brain cortex of TgH(CX3CR1-EGFP) mice. Epifluorescence - and confocal laser-scanning microscopy were employed for analysis of fixed tissue sections, whereas two-photon laser-scanning microscopy (2P-LSM) was used to track tumor cells and microglia in the brain of living animals. RESULTS: Implanted mCherry-GL261 cells successfully developed brain tumors. They mimic the aggressive behavior found in human disease, with a rapid increase in size and the presence of secondary tumors apart from the injection site. As tumor grows, mCherry-GL261 cells progressively lost their original shape, adopting a heterogeneous and diffuse morphology at 14-18 d. Soma size increased from 10-52 µm. At this point, we focused on the kinetics of microglial access to glioma tissues. 2P-LSM revealed an intense microgliosis in brain areas already shortly after tumor implantation, i.e. at 30 min. By confocal microscopy, we found clusters of microglial cells around the tumor mass in the first 3 days. Then cells infiltrated the tumor area, where they remained during all the time points studied, from 6-18 days. Microglia in contact with glioma cells also present changes in cell morphology, from a ramified to an amoeboid shape. Cell bodies enlarged from 366 ± 0.0 µm(2), in quiescent microglia, to 1310 ± 146.0 µm(2), and the cell processes became shortened. CONCLUSIONS: The GL261/CX3CR1 mouse model reported here is a valuable tool for imaging of microglial cells during glioma growth, either in fixed tissue sections or living animals. Remarkable advantages are the use of immunocompetent animals and the simplified imaging method without the need of immunohistochemical procedures.


Assuntos
Córtex Cerebral/ultraestrutura , Glioblastoma/ultraestrutura , Glioma/ultraestrutura , Animais , Receptor 1 de Quimiocina CX3C , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/patologia , Glioma/genética , Glioma/patologia , Humanos , Camundongos , Microglia/metabolismo , Microglia/patologia , Microglia/ultraestrutura , Microscopia Confocal , Receptores de Quimiocinas/genética
7.
Neurochem Res ; 39(12): 2452-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25297574

RESUMO

This study examined whether the cytokine interferon (IFN) gamma plays a role in the injury of SH-SY5Y cells caused by MPP(+) (1-methyl-4-phenylpyridinium). First of all, IFN-gamma sensitized cells to the neurotoxin MPP(+), as determined by MTT (3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide) assay. MPP(+)-injured cells showed higher reactive oxygen species (ROS) levels, which was reinforced by IFN-gamma. The injury triggered a marked expression of the neuronal NOS (nNOS) enzyme. L-NAME [N(ω)-nitro-L-arginine methyl ester, a non-specific NOS inhibitor] reestablished the cell viability after IFN-gamma challenging, and recovered cells from MPP(+) injury (95.0 vs. 84.7 %; P < 0.05). Seven-NI (7-nitroindazole, a nNOS inhibitor) protected cells against the injury by MPP(+) co-administered with IFN-gamma. Both inhibitors restrained the apoptosis of SH-SY5Y cells caused by MPP(+)/IFN-gamma. Regarding oxidative stress, L-NAME and 7-NI attenuated the increase in ROS levels caused by MPP(+) (45.3 or 48.4 vs. 87.9 %, P < 0.05). Indeed, L-NAME was more effective than 7-NI for reducing oxidative stress caused by MPP(+) under IFN-gamma exposition. The nNOS gene silencing by small-interfering RNAs recovered cells challenged by IFN-gamma (24 h), or MPP(+) (8 h). In conclusion, IFN-gamma sensitizes cells to MPP(+)-induced injury, also causing an increase in ROS levels. Pretreating cells with L-NAME or 7-NI reverts both the oxidative stress and apoptosis triggered by the neurotoxin MPP(+). Taking together, our data reinforce that IFN-gamma and NOS enzymes play a role in oxidative stress and dopaminergic cell death triggered by MPP(+).


Assuntos
Interferon gama/fisiologia , Óxido Nítrico Sintase/antagonistas & inibidores , Apoptose/genética , Linhagem Celular Tumoral , Humanos , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Neurol Sci ; 459: 122969, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38507990

RESUMO

Multiple Sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS) characterized by damage to the myelin sheaths of oligodendrocytes. Currently, there is no specific biomarker to identify the disease; however, a diagnostic criterion has been established based on patient's clinical, laboratory, and imaging characteristics, which assists in identifying this condition. The primary method for diagnosing MS is the McDonald criteria, first described in 2001 and revised in the years 2005, 2012, and 2017. These criteria have been continuously reviewed to enhance specificity and sensitivity in the diagnosis of MS, thereby reducing errors in its differential diagnosis. An important differential diagnosis that shares overlapping features with MS, mainly the progressive forms, are leukodystrophies with demyelination as underlying pathology. Leukodystrophies comprise a rare group of genetically determined disorders that lead to either demyelination or hypomyelination of the central nervous system that can result neuroimaging changes as well as clinical findings similar to those observed in MS. Thus, systematic evaluation encompassing clinical presentation, neuroimaging findings, and laboratory metrics proves indispensable for a differential diagnosis. As such, this study aimed to establish, clearly and objectively, the similarities and differences between MS and the main demyelinating leukodystrophies. The study analyzed the parameters of the McDonald criteria, including clinical, laboratory, and magnetic resonance imaging aspects, as found in patients with leukodystrophies through scoping literature review. The data were compared with the determinations of the revised 2017 McDonald criteria to facilitate the differential diagnosis of these diseases in clinical practice.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Diagnóstico Diferencial , Doenças Desmielinizantes/diagnóstico , Sistema Nervoso Central , Imageamento por Ressonância Magnética/métodos
9.
PeerJ ; 12: e16669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313024

RESUMO

This study evaluated clinical features of individuals with long COVID (5-8 months after diagnosis) who reported sleep and memory problems (62 cases) compared to those without (52 controls). Both groups had a similar mean age (41 vs. 39 years). Around 86% of the participants were non-hospitalized at the time of infection, and none of them were vaccinated at that point. Subsequently, both cases and controls received the vaccine; however, the vaccination rates differed significantly between the groups (30.7% vs. 51.0%). Cases and controls had similar rates of symptoms at acute COVID phase. However, cases were more likely to experience coryza, dyspnea, headache, and nausea/vomiting during long COVID. Regarding new-onset symptoms in long COVID, 12.9% of cases had dyspnea, and 14.5% experienced nausea/vomiting, whereas in the control group there were only 1.9% and 0.0%, respectively. Cases also had a significantly higher prevalence of persistent headache (22.6% vs. 7.7%), and dyspnea (12.9% vs. 0.0). In addition, cases also showed an increased rate of mental health complaints: disability in daily activities (45.2% vs. 9.6%; P < 0.001); concentration/sustained attention difficulties (74.2% vs. 9.6%; P < 0.001); anxiety-Generalized Anxiety Disorder 2-item scale (GAD-2) ≥ 3 (66.1% vs. 34.6%; P = 0.0013); and "post-COVID sadness" (82.3% vs. 40.4%; P < 0.001). We observed a significant correlation between sadness and anxiety in cases, which was not observed in controls (P=0.0212; Spearman correlation test). Furthermore, the frequency of concomitant sadness and anxiety was markedly higher in cases compared to controls (59.7% vs. 19.2%) (P < 0.0001; Mann-Whitney test). These findings highlight a noteworthy association between sadness and anxiety specifically in cases. In conclusion, our data identified concurrent psychological phenotypes in individuals experiencing sleep and memory disturbances during long COVID. This strengthens the existing evidence that SARS-CoV-2 causes widespread brain pathology with interconnected phenotypic clusters. This finding highlights the need for comprehensive medical attention to address these complex issues, as well as major investments in testing strategies capable of preventing the development of long COVID sequelae, such as vaccination.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Síndrome de COVID-19 Pós-Aguda , Depressão/epidemiologia , Sono , Cefaleia/epidemiologia , Dispneia , Náusea , Vômito
10.
Pharmaceutics ; 15(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37631249

RESUMO

Circular RNAs (circRNAs) are single-stranded RNA molecules often circularized by backsplicing. Growing evidence implicates circRNAs in the underlying mechanisms of various diseases, such as Alzheimer's and Parkinson's disease (PD)-the first and second most prevalent neurodegenerative disorders. In this sense, circSNCA, circHIPK2, circHIPK3, and circSLC8A1 are circRNAs that have been related to the neurodegenerative process of PD. Gain-of-function and loss-of-function studies on circRNAs have shed light on their roles in the pathobiology of various diseases. Gain-of-function approaches typically employ viral or non-viral vectors that hyperexpress RNA sequences capable of circularizing to form the specific circRNA under investigation. In contrast, loss-of-function studies utilize CRISPR/Cas systems, antisense oligonucleotides (ASOs), or RNAi techniques to knock down the target circRNA. The role of aberrantly expressed circRNAs in brain pathology has raised a critical question: could circRNAs serve as viable targets for neuroprotective treatments? Translating any oligonucleotide-based therapy, including those targeting circRNAs, involves developing adequate brain delivery systems, minimizing off-target effects, and addressing the high costs of treatment. Nonetheless, RNAi-based FDA-approved drugs have entered the market, and circRNAs have attracted significant attention and investment from major pharmaceutical companies. Spanning from bench to bedside, circRNAs present a vast opportunity in biotechnology for oligonucleotide-based therapies designed to slow or even halt the progression of neurodegenerative diseases.

11.
PLoS One ; 17(12): e0279337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36538546

RESUMO

Polycystic kidney disease (PKD), also known as autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous condition characterized by cysts in renal parenchyma. It is the most prevalent inherited disease of domestic cats. MicroRNAs (miRNAs or ncRNA) are short, noncoding, single-stranded RNAs that may induce PKD cytogenesis by affecting numerous targets genes as well as by directly regulating PKD gene expression. We compared the relative expression profile of miR-20a, -192, -365, -15b-5p, and -16-5p from plasma and serum samples of nine domestic cats with PKD1 mutation, detected by polymerase chain reaction (PCR), and a control group (n = 10). Blood samples from cats with PKD1 mutation provide similar concentrations of microRNAs either from plasma or serum. Serum miR-20a is upregulated in PKD group with p < 0.005; Roc curve analysis showed an AUC of 90,1% with a cut-off value sensitivity of 77.8% and specificity of 100%. This data provides important information regarding renal miRNA expression in peripheral blood sampling.


Assuntos
MicroRNAs , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Gatos , Animais , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/veterinária , Mutação , MicroRNAs/metabolismo , Rim/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
12.
Biomolecules ; 11(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34439854

RESUMO

Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBMs commonly acquire resistance to standard-of-care therapies. Among the novel means to sensitize GBM to DNA-damaging therapies, a promising strategy is to combine them with inhibitors of the DNA damage repair (DDR) machinery, such as inhibitors for poly(ADP-ribose) polymerase (PARP). PARP inhibitors (PARPis) have already shown efficacy and have received regulatory approval for breast, ovarian, prostate, and pancreatic cancer treatment. In these cancer types, after PARPi administration, patients carrying specific mutations in the breast cancer 1 (BRCA1) and 2 (BRCA2) suppressor genes have shown better response when compared to wild-type carriers. Mutated BRCA genes are infrequent in GBM tumors, but their cells can carry other genetic alterations that lead to the same phenotype collectively referred to as 'BRCAness'. The most promising biomarkers of BRCAness in GBM are related to isocitrate dehydrogenases 1 and 2 (IDH1/2), epidermal growth factor receptor (EGFR), phosphatase and tensin homolog (PTEN), MYC proto-oncogene, and estrogen receptors beta (ERß). BRCAness status identified by accurate biomarkers can ultimately predict responsiveness to PARPi therapy, thereby allowing patient selection for personalized treatment. This review discusses potential biomarkers of BRCAness for a 'precision medicine' of GBM patients.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Glioblastoma/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Biomarcadores Tumorais/genética , Humanos , Proto-Oncogene Mas
13.
J Vet Diagn Invest ; 33(6): 1151-1155, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34301168

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level by silencing targeted messenger RNA (mRNA). Most studies concerning miRNA expression use solid tissue samples. However, circulating miRNAs from different body fluids have recently emerged as diagnostic and prognostic molecules, given that they hold informative value and have increased stability in cell-free form. Blood sampling of cats can be challenging given their small body size and because they often experience distress when handled. We quantified miR-20a, -192, -365, -15b-5p, and -16-5p from plasma and serum samples of 10 healthy domestic cats. Our RT-rtPCR procedure used 100 µL of either plasma or serum samples as sources of biomarker molecules. However, serum provided higher amounts of miRNA than plasma samples, with a p < 0.0001 for miR-20a and p < 0.0002 for miR-16-5p.


Assuntos
MicroRNA Circulante , MicroRNAs , Animais , Biomarcadores , Gatos , MicroRNAs/genética , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária
14.
Sleep Med ; 78: 160-168, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33444973

RESUMO

The flow of gene expression or "The central dogma of molecular biology": DNA - RNA - protein, proposed by Watson & Crick sixty years ago, is a tightly controlled cell process. In the middle of this journey, the mRNA molecule is regulated by "RNA interference" (RNAi), a posttranscriptional gene silencing mechanism. A microRNA is an endogenous short double-stranded RNA that down-regulates hundreds of mRNAs by RNAi, maintaining healthy cell physiology. In contrast, aberrant expressions of microRNAs play a role in Parkinson's disease (PD) pathogenesis. The damage may start at an early period of brain degeneration, in the non-motor or "prodromal" stage, where autonomic, mood and sleep changes are often manifested. REM-sleep behavior disorder (RBD) is the prodromal manifestation with the highest odds for conversion into PD, thereby a valuable phenotype for disease prediction. The present review focuses on microRNAs' role in the pathogenesis of PD and RBD, summarizing the state-of-the-art of these RNA molecules as noninvasive biomarkers for non-motor prodromal (RBD) and early PD.


Assuntos
MicroRNAs , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Biomarcadores , Humanos , MicroRNAs/genética , Doença de Parkinson/genética , Sintomas Prodrômicos , Transtorno do Comportamento do Sono REM/diagnóstico , Transtorno do Comportamento do Sono REM/genética
15.
Mol Diagn Ther ; 24(1): 61-68, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792921

RESUMO

In November 2019 givosiran became the second small interfering RNA (siRNA)-based drug to receive US Food and Drug Administration (FDA) approval, it has been developed for the treatment of acute intermittent porphyria (AIP), a disorder characterized by life-threatening acute neurovisceral attacks. The porphyrias are a group of disorders in which enzymatic deficiencies in heme production lead to toxic accumulation of delta-aminolevulinic acid (ALA) and porphobilinogen (PBG), which are involved in the neurovisceral attacks. Givosiran acts as a conventional siRNA to trigger RNA interference (RNAi)-mediated gene silencing on delta-ALA synthase 1 (ALAS1), thus returning ALA and PBG metabolites to the physiological level to attenuate further neurotoxicity. Givosiran makes use of a new hepatic-delivery system that conjugates three GalNac (N-acetylgalactosamine) molecules to the siRNA passenger strand. GalNac binds to the liver asialoglycoprotein receptor, favoring the internalization of these GalNac-conjugated siRNAs into the hepatic cells. In a phase I study, subcutaneous monthly administration of givosiran 2.5 mg/kg reduced > 90% of ALA and PBG content. This siRNA is being analyzed in ENVISION (NCT03338816), a phase III, multicenter, placebo-controlled randomized controlled trial. In preliminary results, givosiran achieved clinical endpoints for AIP, reducing urinary ALA levels, and presented a safety profile that enabled further drug development. The clinical performance of givosiran revealed that suppression of ALAS1 by GalNac-decorated siRNAs represents an additional approach for the treatment of patients with AIP that manifests recurrent acute neurovisceral attacks.


Assuntos
Acetilgalactosamina/análogos & derivados , Inativação Gênica , Terapia Genética , Óxido Nítrico Sintase Tipo I/genética , Pirrolidinas/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Acetilgalactosamina/administração & dosagem , Acetilgalactosamina/efeitos adversos , Acetilgalactosamina/farmacocinética , Acetilgalactosamina/uso terapêutico , Ensaios Clínicos como Assunto , Desenvolvimento de Medicamentos , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Heme/biossíntese , Humanos , Porfiria Aguda Intermitente , Pirrolidinas/administração & dosagem , Pirrolidinas/efeitos adversos , Pirrolidinas/farmacocinética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/farmacocinética , Resultado do Tratamento
16.
Cells ; 9(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244357

RESUMO

MicroRNAs (miRNAs) are small double-stranded RNAs that exert a fine-tuning sequence-specific regulation of cell transcriptome. While one unique miRNA regulates hundreds of mRNAs, each mRNA molecule is commonly regulated by various miRNAs that bind to complementary sequences at 3'-untranslated regions for triggering the mechanism of RNA interference. Unfortunately, dysregulated miRNAs play critical roles in many disorders, including Parkinson's disease (PD), the second most prevalent neurodegenerative disease in the world. Treatment of this slowly, progressive, and yet incurable pathology challenges neurologists. In addition to L-DOPA that restores dopaminergic transmission and ameliorate motor signs (i.e., bradykinesia, rigidity, tremors), patients commonly receive medication for mood disorders and autonomic dysfunctions. However, the effectiveness of L-DOPA declines over time, and the L-DOPA-induced dyskinesias commonly appear and become highly disabling. The discovery of more effective therapies capable of slowing disease progression -a neuroprotective agent-remains a critical need in PD. The present review focus on miRNAs as promising drug targets for PD, examining their role in underlying mechanisms of the disease, the strategies for controlling aberrant expressions, and, finally, the current technologies for translating these small molecules from bench to clinics.


Assuntos
MicroRNAs/uso terapêutico , Doença de Parkinson/genética , Doença de Parkinson/terapia , Animais , Biotecnologia , Humanos , Inflamação/genética , Inflamação/patologia , Pesquisa Translacional Biomédica , alfa-Sinucleína/metabolismo
17.
Mol Diagn Ther ; 24(1): 49-59, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31701435

RESUMO

In 2018, patisiran was the first-ever RNA interference (RNAi)-based drug approved by the US Food and Drug Administration. Now pharmacology textbooks may include a new drug class that results in the effect first described by Fire and Mello 2 decades ago: post-transcriptional gene silencing by a small-interfering RNA (siRNA). Patients with hereditary transthyretin-mediated amyloidosis (hATTR amyloidosis) present with mutations in the transthyretin (TTR) gene that lead to the formation of amyloid deposits in peripheral nerves and heart. The disease may also affect the eye and central nervous system. The formulation of patisiran comprises the RNAi drug encapsulated into a nanoparticle especially developed to deliver the anti-TTR siRNA into the main TTR producer: the liver. Hepatic cells contain apolipoprotein E receptors that recognize ApoE proteins opsonized in the lipid carrier and internalize the drug by endocytosis. Lipid vesicles are disrupted in the cell cytoplasm, and siRNAs are free to trigger the RNAi-based TTR gene silencing. The silencing process involves the binding of siRNA guide strand to 3'-untranslated region sequence of both mutant and wild-type TTR messenger RNA, which culminates in the TTR mRNA cleavage by the RNA-induced silencing complex (RISC) as the first biochemical drug effect. Patisiran 0.3 mg/kg is administered intravenously every 3 weeks. Patients require premedication with anti-inflammatory drugs and antagonists of histamine H1 and H2 receptors to prevent infusion-related reactions and may require vitamin A supplementation. Following patisiran treatment, TTR knockdown remained stable for at least 2 years. Adverse effects were mild to moderate with unchanged hematological, renal, or hepatic parameters. No drug-related severe adverse effects occurred in a 24-month follow-up phase II open-label extension study. At the recommended dosage of patisiran, Cmax and AUC values (mean ± standard deviation) were 7.15 ± 2.14 µg/mL and 184 ± 159 µg·h/mL, respectively. The drug showed stability in circulation with > 95% encapsulated in lipid particles. Metabolization occurred by ribonuclease enzymes, with less than 1% excreted unchanged in the urine. Patisiran ameliorated neuropathy impairment according to the modified Neuropathy Impairment Score + 7 analysis of the phase III study. The Norfolk Quality of Life-Diabetic Neuropathy score and gait speed improved in 51% of the patisiran-treated group in 18 months. Additionally, the modified body mass index showed positive outcomes. Altogether, the data across phase I-III clinical trials points to patisiran as an effective and safe drug for the treatment of hATTR amyloidosis. It is hoped that real-world data from a larger number of patients treated with patisiran will confirm the effectiveness of this first-approved siRNA-based drug.


Assuntos
Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/terapia , Terapia Genética , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Animais , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Vias de Administração de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Inativação Gênica , Humanos , Oligonucleotídeos/administração & dosagem , Pré-Albumina/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/farmacocinética , Resultado do Tratamento
18.
J Neurol Sci ; 419: 117177, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068906

RESUMO

Cognitive dysfunction in Parkinson's disease (PD) has received increasing attention, and, together with other non-motor symptoms, exert a significant functional impact in the daily lives of patients. This article aims to compile and briefly summarize selected published data about clinical features, cognitive evaluation, biomarkers, and pathophysiology of PD-related dementia (PDD). The literature search included articles indexed in the MEDLINE/PubMed database, published in English, over the last two decades. Despite significant progress on clinical criteria and cohort studies for PD-mild cognitive impairment (PD-MCI) and PDD, there are still knowledge gaps about its exact molecular and pathological basis. Here we overview the scientific literature on the role of functional circuits, neurotransmitter systems (monoaminergic and cholinergic), basal forebrain, and brainstem nuclei dysfunction in PD-MCI. Correlations between neuroimaging and cerebrospinal fluid (CSF) biomarkers, clinical outcomes, and pathological results are described to aid in uncovering the neurodegeneration pattern in PD-MCI and PDD.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Biomarcadores , Disfunção Cognitiva/etiologia , Humanos , Neuroimagem , Doença de Parkinson/complicações
19.
J Antimicrob Chemother ; 63(3): 526-33, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19151037

RESUMO

OBJECTIVES: The present study reports on the preparation and testing of a desoxycholate amphotericin B (D-AMB) sustained delivery system based on poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) polymeric blends (Nano-D-AMB) aimed at reducing the number of AMB administrations required to treat mycosis. METHODS: BALB/c mice were infected with the yeast Paracoccidioides brasiliensis intravenously to mimic the chronic form of paracoccidioidomycosis. At 30 days post-infection, the animals were treated with Nano-D-AMB [6 mg/kg of encapsulated D-AMB, intraperitoneally (ip), interval of 72 h] or D-AMB (2 mg/kg, ip, interval of 24 h). Drug efficacy was investigated by the fungal burden recovery from tissues. Toxicity was assessed by renal and hepatic biochemical parameters, physical appearance of the animals and haematological investigation. The control groups used were non-infected and the infected mice mock treated with PBS. RESULTS: Nano-D-AMB presented results comparable to free D-AMB, with a marked antifungal efficacy. The Nano-D-AMB-treated group presented lower loss of body weight and absence of stress sign (piloerection and hypotrichosis) observed after D-AMB treatment. No renal [blood urea nitrogen (BUN), creatinine] or hepatic (pyruvic and oxalacetic glutamic transaminases) biochemical abnormalities were found. The micronucleus assay showed no significant differences in both the micronucleus frequency and percentage of polychromatic erythrocytes for Nano-D-AMB, indicating the absence of genotoxicity and cytotoxic effects. CONCLUSIONS: The D-AMB-coated PLGA-DMSA nanoparticle showed antifungal efficacy, fewer undesirable effects and a favourable extended dosing interval. Nano-D-AMB comprises an AMB formulation able to lessen the number of drug administrations. Further studies would elucidate whether Nano-D-AMB would be useful to treat systemic fungal infections such as paracoccidioidomycosis, candidiasis, aspergillosis and cryptococcosis.


Assuntos
Anfotericina B/uso terapêutico , Ácido Desoxicólico/uso terapêutico , Ácido Láctico/uso terapêutico , Nanopartículas/uso terapêutico , Paracoccidioides/efeitos dos fármacos , Paracoccidioidomicose/tratamento farmacológico , Ácido Poliglicólico/uso terapêutico , Succímero/uso terapêutico , Anfotericina B/administração & dosagem , Anfotericina B/efeitos adversos , Animais , Peso Corporal , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/fisiologia , Contagem de Colônia Microbiana , Ácido Desoxicólico/administração & dosagem , Ácido Desoxicólico/efeitos adversos , Combinação de Medicamentos , Feminino , Rim/efeitos dos fármacos , Rim/fisiologia , Ácido Láctico/administração & dosagem , Ácido Láctico/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/microbiologia , Fígado/fisiologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/efeitos adversos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Succímero/administração & dosagem , Succímero/efeitos adversos , Resultado do Tratamento
20.
Neurotox Res ; 36(1): 117-131, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31041676

RESUMO

Nitric oxide (NO) has chemical properties that make it uniquely suitable as an intracellular and intercellular messenger. NO is produced by the activity of the enzyme nitric oxide synthases (NOS). There is substantial and mounting evidence that slight abnormalities of NO may underlie a wide range of neurodegenerative disorders. NO participates of the oxidative stress and inflammatory processes that contribute to the progressive dopaminergic loss in Parkinson's disease (PD). The present study aimed to evaluate in vitro and in vivo the effects of neuronal NOS-targeted siRNAs on the injury caused in dopaminergic neurons by the toxin 6-hidroxydopamine (6-OHDA). First, we confirmed (immunohistochemistry and Western blotting) that SH-SY5Y cell lineage expresses the dopaminergic marker tyrosine hydroxylase (TH) and the protein under analysis, neuronal NOS (nNOS). We designed four siRNAs by using the BIOPREDsi algorithm choosing the one providing the highest knockdown of nNOS mRNA in SH-SY5Y cells, as determined by qPCR. siRNA 4400 carried by liposomes was internalized into cells, caused a concentration-dependent knockdown on nNOS, and reduced the toxicity induced by 6-OHDA (p < 0.05). Regarding in vivo action in the dopamine-depleted animals, intra-striatal injection of siRNA 4400 at 4 days prior 6-OHDA produced a decrease in the rotational behavior induced by apomorphine. Finally, siRNA 4400 mitigated the loss of TH(+) cells in substantia nigra dorsal and ventral part. In conclusion, the suppression of nNOS enzyme by targeted siRNAs modified the progressive death of dopaminergic cells induced by 6-OHDA and merits further pre-clinical investigations as a neuroprotective approach for PD.


Assuntos
Neurônios Dopaminérgicos/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/enzimologia , RNA Interferente Pequeno/administração & dosagem , Substância Negra/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Transtornos Parkinsonianos/induzido quimicamente , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA