Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Avian Pathol ; 51(6): 590-600, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35950683

RESUMO

Infection and immunity studies involving genetically modified organisms (GMOs), such as gene knockout bacterial mutants, require stringent physical containment to prevent the accidental spread of these organisms into the environment. Experimental respiratory tract infection models often require the animals, for example birds, to be transported several times between a negative pressure housing isolator and a bespoke aerosol exposure chamber under positive pressure. While the exposure chamber is sealed and fitted with HEPA filters, the repeated movements of infected animals and opening of the chamber can still pose a serious risk of breaching containment of the organism in the experimental facility. In the current study, the ability of two aerosol infection protocols that expose birds to avian pathogenic E. coli (APEC) aerosols directly within the housing isolator was evaluated. Young chicks were exposed to APEC E956 within the negative pressure housing isolators using either a nebulizer or an atomizer. Birds exposed twice (days 1 and 4) to aerosols of APEC E956 produced by the nebulizer developed a rapidly progressing disease mimicking field cases of avian colibacillosis. However, birds exposed to aerosols of APEC E956 produced by an atomizer did not develop colibacillosis even after three exposures to APEC E956 on days 1, 4 and 7. Consequently, the current study reports the nebulizer was more efficacious in producing avian colibacillosis under stricter bacterial containment settings.RESEARCH HIGHLIGHTS Two aerosol exposure methods were evaluated to develop avian colibacillosis.Nebulizer method found to be more efficient in reproducing avian colibacillosis.Refined infection method can be used to study genetically modified organisms (GMOs).


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Galinhas/microbiologia , Escherichia coli/genética , Doenças das Aves Domésticas/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Nebulizadores e Vaporizadores/veterinária , Reprodução
2.
J Bacteriol ; 203(2)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33077633

RESUMO

Mycoplasma bovis causes serious infections in ruminants, leading to huge economic losses. Lipoproteins are key components of the mycoplasma membrane and are believed to function in nutrient acquisition, adherence, enzymatic interactions with the host, and induction of the host's immune response to infection. Many genes of M. bovis have not been assigned functions, in part because of their low sequence similarity with other bacteria, making it difficult to extrapolate gene functions. This study examined functions of a surface-localized leucine-rich repeat (LRR) lipoprotein encoded by mbfN of M. bovis PG45. Homologs of MbfN were detected as 48-kDa peptides by Western blotting in all the strains of M. bovis included in this study, with the predicted 70-kDa full-length polypeptide detected in some strains. Sequence analysis of the gene revealed the absence in some strains of a region encoding the carboxyl-terminal 147 amino acids found in strain PG45, which could account for the variation detected by immunoblotting. In silico analysis of MbfN suggested that it may have an adhesion-related function. In vitro binding assays confirmed MbfN to be a fibronectin and heparin-binding protein. Disruption of mbfN in M. bovis PG45 significantly reduced (P = 0.033) the adherence of M. bovis PG45 to MDBK cells in vitro, demonstrating the role of MbfN as an adhesin.IMPORTANCE Experimental validation of the putative functions of genes in M. bovis will advance our understanding of the basic biology of this economically important pathogen and is crucial in developing prevention strategies. This study demonstrated the extracellular matrix binding ability of a novel immunogenic lipoprotein of M. bovis, and the role of this protein in adhesion by M. bovis suggests that it could play a role in virulence.


Assuntos
Adesinas Bacterianas/metabolismo , Matriz Extracelular/metabolismo , Lipoproteínas/metabolismo , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Sequência de Bases , Western Blotting/veterinária , Bovinos , Biologia Computacional , Eletroforese em Gel de Poliacrilamida/veterinária , Matriz Extracelular/química , Fibronectinas/metabolismo , Lipoproteínas/química , Lipoproteínas/genética , Modelos Estruturais , Infecções por Mycoplasma/microbiologia , Mycoplasma bovis/genética , Proteólise , Ratos , Ratos Sprague-Dawley , Ruminantes , Alinhamento de Sequência/veterinária
3.
Avian Pathol ; 46(5): 464-473, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28345962

RESUMO

Infection with Mycoplasma gallisepticum induces severe lymphoproliferative lesions in multiple sites along the respiratory tract in chickens and turkeys. These immunopathological responses have been well-characterized in chickens, but have not been studied closely in turkeys. The aim of the study described here was to examine the immune responses of turkeys after live vaccination and infection with M. gallisepticum. In a strain comparison study, the mean log10 antibody titre of birds exposed to an aerosol culture of M. gallisepticum strain Ap3AS was found to be significantly higher at day 14 than that of birds exposed to strain 100809/31. In a dose-response study, there was a significant difference in the mean log10 antibody titre between birds exposed to mycoplasma broth and birds exposed to the highest dose of strain Ap3AS at day 7 after exposure. Immunohistochemical analysis of the tracheal mucosa and the air sacs revealed similar patterns of distribution of CD4+ and CD8+ lymphocytes to those seen in the tracheal mucosa of chickens, implicating these cell types in the pathogenesis of respiratory mycoplasmosis in turkeys. Turkeys that had been vaccinated with M. gallisepticum GapA+ ts-11 had significantly higher antibody titres than unvaccinated birds at both 7 and 14 days after challenge with strain Ap3AS. Vaccination with GapA+ ts-11 protected against the lymphoproliferative response to infection with virulent M. gallisepticum in both the tracheal mucosa and the air sacs, suggesting that this strain may be a useful vaccine candidate for use in turkeys.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/imunologia , Doenças das Aves Domésticas/prevenção & controle , Perus , Sacos Aéreos/citologia , Animais , Anticorpos Antibacterianos/sangue , Complexo CD3/metabolismo , Antígenos CD8/metabolismo , Imunoglobulina G/sangue , Infecções por Mycoplasma/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Linfócitos T/fisiologia , Traqueia/citologia , Vacinação
4.
J Bacteriol ; 197(9): 1549-58, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25691526

RESUMO

UNLABELLED: Although the complete genome sequences of three strains of Mycoplasma bovis are available, few studies have examined gene function in this important pathogen. Mycoplasmas lack the biosynthetic machinery for the de novo synthesis of nucleic acid precursors, so nucleases are likely to be essential for them to acquire nucleotide precursors. Three putative membrane nucleases have been annotated in the genome of M. bovis strain PG45, MBOVPG45_0089 and MBOVPG45_0310, both of which have the thermonuclease (TNASE_3) functional domain, and MBOVPG45_0215 (mnuA), which has an exonuclease/endonuclease/phosphatase domain. While previous studies have demonstrated the function of TNASE_3 domain nucleases in several mycoplasmas, quantitative comparisons of the contributions of different nucleases to cellular nuclease activity have been lacking. Mapping of a library of 319 transposon mutants of M. bovis PG45 by direct genome sequencing identified mutants with insertions in MBOVPG45_0310 (the Δ0310 mutant) and MBOVPG45_0215 (the Δ0215 mutant). In this study, the detection of the product of MBOVPG45_0215 in the Triton X-114 fraction of M. bovis cell lysates, its cell surface exposure, and its predicted signal peptide suggested that it is a surface-exposed lipoprotein nuclease. Comparison of a ΔmnuA mutant with wild-type M. bovis on native and denatured DNA gels and in digestion assays using double-stranded phage λ DNA and closed circular plasmid DNA demonstrated that inactivation of this gene abolishes most of the cellular exonuclease and endonuclease activity of M. bovis. This activity could be fully restored by complementation with the wild-type mnuA gene, demonstrating that MnuA is the major cellular nuclease of M. bovis. IMPORTANCE: Nucleases are thought to be important contributors to virulence and crucial for the maintenance of a nutritional supply of nucleotides in mycoplasmas that are pathogenic in animals. This study demonstrates for the first time that of the three annotated cell surface nuclease genes in an important pathogenic mycoplasma, the homologue of the thermostable nuclease identified in Gram-positive bacteria is responsible for the majority of the nuclease activity detectable in vitro.


Assuntos
Membrana Celular/enzimologia , Desoxirribonucleases/metabolismo , Mycoplasma bovis/enzimologia , Elementos de DNA Transponíveis , Desoxirribonucleases/genética , Técnicas de Inativação de Genes , Teste de Complementação Genética , Testes Genéticos , Mutagênese Insercional
5.
Avian Pathol ; 44(1): 35-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25431001

RESUMO

Mycoplasma gallisepticum causes chronic respiratory disease in chickens and is also highly pathogenic in turkeys. Several live attenuated M. gallisepticum vaccines are available for prevention of disease in chickens but they are considered to be either not safe or not efficacious in turkeys. The studies presented here aimed to develop a suitable infection model in turkeys, a prerequisite for development of a vaccine against M. gallisepticum for turkeys. Two wild-type Australian M. gallisepticum strains, Ap3AS and 100809/31, were used and their capacity to induce lesions was evaluated in 5-week-old to 6-week-old turkeys exposed to aerosols of these strains. Gross air sac lesion scores in the group exposed to Ap3AS were significantly greater than those in the group exposed to 100809/31 (P < 0.05). Histological tracheal lesion scores and tracheal mucosal thicknesses were significantly greater in birds exposed to either strain than in the unexposed birds (P < 0.05), but no significant differences were observed between the two infected groups. In a subsequent experiment, 6-week-old to 7-week-old turkeys were exposed to different doses of M. gallisepticum Ap3AS. Serology and M. gallisepticum re-isolation performed 14 days after infection showed that all birds exposed to Ap3AS were positive by rapid serum agglutination and by culture. Gross air sac lesion scores in the groups exposed to the highest dose, 8.17 × 10(8) colour-changing units Ap3AS/ml, as well as a 10-fold lower dose were significantly more severe than in the uninfected control group. Lesion scores and tracheal mucosal thicknesses were significantly greater in birds exposed to Ap3AS than in the unexposed birds (P < 0.05). However, no significant differences were seen in tracheal mucosal thicknesses or lesion scores between the groups exposed to the different doses of Ap3AS. This study has established a reliable challenge model for M. gallisepticum infection in turkeys, which will be useful for evaluation of potential M. gallisepticum vaccine candidates for this species.


Assuntos
Modelos Animais de Doenças , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/genética , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologia , Perus , Animais , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Primers do DNA/genética , Modelos Lineares , Infecções por Mycoplasma/patologia , Mycoplasma gallisepticum/imunologia , Testes Sorológicos/veterinária
6.
Vet Microbiol ; 294: 110119, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772075

RESUMO

Mycoplasma synoviae causes infectious synovitis and respiratory tract infections in chickens and is responsible for significant economic losses in the poultry industry. Effective attachment and colonisation of the trachea is critical for the persistence of the organism and progression of the disease it causes. The respiratory tract infection is usually sub-clinical, but concurrent infection with infectious bronchitis virus (IBV) is known to enhance the pathogenicity of M. synoviae. This study aimed to explore differentially expressed genes in the tracheal mucosa, and their functional categories, during chronic infection with M. synoviae, using a M. synoviae-IBV infection model. The transcriptional profiles of the trachea were assessed 2 weeks after infection using RNA sequencing. In chickens infected with M. synoviae or IBV, only 1 or 8 genes were differentially expressed compared to uninfected chickens, respectively. In contrast, the M. synoviae-IBV infected chickens had 621 upregulated and 206 downregulated genes compared to uninfected chickens. Upregulated genes and their functional categories were suggestive of uncontrolled lymphoid cell proliferation and an ongoing pro-inflammatory response. Genes associated with anti-inflammatory effects, pathogen removal, apoptosis, regulation of the immune response, airway homoeostasis, cell adhesion and tissue regeneration were downregulated. Overall, transcriptional changes in the trachea, 2 weeks after infection with M. synoviae and IBV, indicate immune dysregulation, robust inflammation and a lack of cytotoxic damage during chronic infection. This model provides insights into the pathogenesis of chronic infection with M. synoviae.


Assuntos
Galinhas , Infecções por Mycoplasma , Mycoplasma synoviae , Doenças das Aves Domésticas , Traqueia , Animais , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/imunologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Mycoplasma synoviae/genética , Traqueia/microbiologia , Traqueia/virologia , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/fisiologia , Doença Crônica , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Transcriptoma , Perfilação da Expressão Gênica , Coinfecção/veterinária , Coinfecção/microbiologia , Coinfecção/virologia
7.
Vet Microbiol ; 293: 110093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692193

RESUMO

Mycoplasma gallisepticum causes chronic respiratory disease in poultry. A novel vaccine, Vaxsafe MG304 (the ts-304 strain), has greater protective efficacy in chickens than the Vaxsafe MG (strain ts-11) vaccine when delivered by eye drop at 3 weeks of age. Applying this vaccine in the hatchery to 1-day-old birds, using mass administration methods, would improve animal welfare and reduce labour costs associated with handling individual birds. This study assessed the protection provided by vaccination with Vaxsafe MG304 after administration to 1-day-old chicks. Chicks were administered a single dose of the vaccine to assess the efficacy of either a high dose (107.0 colour changing units, CCU) or a low dose (105.7 CCU) after eye drop or spray (in water or gel) administration against experimental challenge with virulent M. gallisepticum strain Ap3AS at 7 weeks of age. The vaccine was able to colonise the palatine cleft of chicks after vaccination by eye drop (at both doses) or by spray (in water or gel) (at the high dose). The high dose of vaccine, when delivered by eye drop or spray, was shown to be safe and induced a serological response and protective immunity (as measured by tracheal mucosal thickness and air sac lesion scores) against challenge. Vaccination of 1-day-old chicks with Vaxsafe MG304 by eye drop induced protective immunity equivalent to vaccination at 3 weeks of age. Vaxsafe MG304 was also protective when applied by both coarse- and gel spray methods at the higher dose and is therefore a suitable live attenuated vaccine for use in 1-day-old chicks.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Galinhas , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Vacinação , Animais , Mycoplasma gallisepticum/imunologia , Galinhas/imunologia , Galinhas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/imunologia , Organismos Livres de Patógenos Específicos , Vacinação/veterinária , Anticorpos Antibacterianos/sangue
8.
Infect Immun ; 81(9): 3220-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23798535

RESUMO

Although lipoproteins of mycoplasmas are thought to play a crucial role in interactions with their hosts, very few have had their biochemical function defined. The gene encoding the lipoprotein MslA in Mycoplasma gallisepticum has recently been shown to be required for virulence, but the biochemical function of this gene is not known. Although this gene has no significant sequence similarity to any gene of known function, it is located within an operon in M. gallisepticum that contains a homolog of a gene previously shown to be a nonspecific exonuclease. We mutagenized both genes to facilitate expression in Escherichia coli and then examined the functions of the recombinant proteins. The capacity of MslA to bind polynucleotides was examined, and we found that the protein bound single- and double-stranded DNA, as well as single-stranded RNA, with a predicted binding site of greater than 1 nucleotide but less than or equal to 5 nucleotides in length. Recombinant MslA cleaved into two fragments in vitro, both of which were able to bind oligonucleotides. These findings suggest that the role of MslA may be to act in concert with the lipoprotein nuclease to generate nucleotides for transport into the mycoplasma cell, as the remaining genes in the operon are predicted to encode an ABC transporter.


Assuntos
Proteínas de Transporte/genética , Lipoproteínas/genética , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/patogenicidade , Polinucleotídeos/genética , Polinucleotídeos/metabolismo , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/metabolismo , Infecções por Mycoplasma/microbiologia , Mycoplasma gallisepticum/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virulência/genética , Fatores de Virulência/metabolismo
9.
Appl Environ Microbiol ; 78(16): 5824-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22706051

RESUMO

Neonatal meningitis Escherichia coli (NMEC) is one of the top causes of neonatal meningitis worldwide. Here, 85 NMEC and 204 fecal E. coli isolates from healthy humans (HFEC) were compared for possession of traits related to virulence, antimicrobial resistance, and plasmid content. This comparison was done to identify traits that typify NMEC and distinguish it from commensal strains to refine the definition of the NMEC subpathotype, identify traits that might contribute to NMEC pathogenesis, and facilitate choices of NMEC strains for future study. A large number of E. coli strains from both groups were untypeable, with the most common serogroups occurring among NMEC being O18, followed by O83, O7, O12, and O1. NMEC strains were more likely than HFEC strains to be assigned to the B2 phylogenetic group. Few NMEC or HFEC strains were resistant to antimicrobials. Genes that best discriminated between NMEC and HFEC strains and that were present in more than 50% of NMEC isolates were mainly from extraintestinal pathogenic E. coli genomic and plasmid pathogenicity islands. Several of these defining traits had not previously been associated with NMEC pathogenesis, are of unknown function, and are plasmid located. Several genes that had been previously associated with NMEC virulence did not dominate among the NMEC isolates. These data suggest that there is much about NMEC virulence that is unknown and that there are pitfalls to studying single NMEC isolates to represent the entire subpathotype.


Assuntos
Escherichia coli/genética , Escherichia coli/fisiologia , Fezes/microbiologia , Meningite devida a Escherichia coli/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Plasmídeos/análise , Sorotipagem , Fatores de Virulência/genética
10.
BMC Microbiol ; 12: 51, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22471764

RESUMO

BACKGROUND: Extraintestinal pathogenic Escherichia coli are important pathogens of human and animal hosts. Some human and avian extraintestinal pathogenic E. coli are indistinguishable on the basis of diseases caused, multilocus sequence and phylogenetic typing, carriage of large virulence plasmids and traits known to be associated with extraintestinal pathogenic E. coli virulence. RESULTS: The gene tkt1 identified by a previous signature-tagged transposon mutagenesis study, was found on a 16-kb genomic island of avian pathogenic Escherichia coli (APEC) O1, the first pathogenic Escherichia coli strain whose genome has been completely sequenced. tkt1 was present in 39.6% (38/96) of pathogenic Escherichia coli strains, while only 6.25% (3/48) of E. coli from the feces of apparently healthy chickens was positive. Further, tkt1 was predominantly present in extraintestinal pathogenic E. coli belonging to the B2 phylogenetic group, as compared to extraintestinal pathogenic E. coli of other phylogenetic groups. The tkt1-containing genomic island is inserted between the metE and ysgA genes of the E. coli K12 genome. Among different extraintestinal pathogenic E. coli of the B2 phylogenetic group, 61.7% of pathogenic Escherichia coli, 80.6% of human uropathogenic E.coli and 94.1% of human neonatal meningitis-causing E. coli, respectively, harbor a complete copy of this island; whereas, only a few avian fecal E. coli strains contained the complete island. Functional analysis showed that Tkt1 confers very little transketolase activity but is involved in peptide nitrogen metabolism. CONCLUSION: These results suggest tkt1 and its corresponding genomic island are frequently associated with avian and human ExPEC and are involved in bipeptide metabolism.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Ilhas Genômicas , Transcetolase/genética , Animais , Técnicas de Tipagem Bacteriana , Galinhas/microbiologia , DNA Bacteriano/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Humanos , Tipagem de Sequências Multilocus , Peptídeos/metabolismo , Filogenia , Plasmídeos , Análise de Sequência de DNA
11.
Vet Microbiol ; 270: 109454, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597149

RESUMO

Infection with Mycoplasma bovis has been identified as a growing threat in dairy industries worldwide and there is an urgent need for an inexpensive and accurate herd-level screening tool to identify herds that have been exposed to M. bovis. This study aimed to evaluate the use of the MilA ELISA for testing bulk tank milk (BTM) samples for antibodies against M. bovis and estimate a suitable cut-off and diagnostic sensitivity (DSe) and specificity (DSp) for this assay. An optimal cut-off was then applied for investigating the geographical and seasonal distribution of infection with M. bovis in Australia. A total of 5554 BTM samples from 2683 dairy herds were collected during March, August and December 2017. BTM samples were tested in the MilA ELISA and a cut-off of 29 antibody units (AU) was estimated to be optimal using Bayesian latent class analysis which makes no assumption about the true disease status of herds under investigation. At this cut-off, the DSe and DSp were estimated to be 96.6% (95% highest probability density [HPD] interval: 87.0, 99.8) and 94.2% (95% HPD: 89.9, 97.4), respectively. The diagnostic specifications were found to vary markedly with stage of the production cycle, suggesting that targeted sampling was needed to maximize accuracy. We also found distinct differences in the apparent prevalence of M. bovis in different dairying regions, as well as seasonal variation. The highest apparent prevalence of M. bovis was observed in samples collected in March and an overall drop in the proportion of positive herds was seen from March to December. Overall, this study provides insights into the dynamics of BTM antibodies against M. bovis in Australian dairy herds and how the MilA ELISA can be applied for bulk tank milk testing.


Assuntos
Doenças dos Bovinos , Mycoplasma bovis , Animais , Austrália/epidemiologia , Teorema de Bayes , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Indústria de Laticínios , Ensaio de Imunoadsorção Enzimática/veterinária , Leite , Prevalência
12.
Infect Immun ; 79(5): 1951-60, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21357721

RESUMO

Infections of avian pathogenic Escherichia coli (APEC) result in annual multimillion-dollar losses to the poultry industry. Despite this, little is known about the mechanisms by which APEC survives and grows in the bloodstream. Thus, the aim of this study was to identify molecular mechanisms enabling APEC to survive and grow in this critical host environment. To do so, we compared the transcriptome of APEC O1 during growth in Luria-Bertani broth and chicken serum. Several categories of genes, predicted to contribute to adaptation and growth in the avian host, were identified. These included several known virulence genes and genes involved in adaptive metabolism, protein transport, biosynthesis pathways, stress resistance, and virulence regulation. Several genes with unknown function, which were localized to pathogenicity islands or APEC O1's large virulence plasmid, pAPEC-O1-ColBM, were also identified, suggesting that they too contribute to survival in serum. The significantly upregulated genes dnaK, dnaJ, phoP, and ybtA were subsequently subjected to mutational analysis to confirm their role in conferring a competitive advantage during infection. This genome-wide analysis provides novel insight into processes that are important to the pathogenesis of APEC O1.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/patogenicidade , Doenças das Aves Domésticas/genética , Animais , Galinhas , Escherichia coli/genética , Escherichia coli/imunologia , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/genética , Expressão Gênica , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Estudo de Associação Genômica Ampla , Hibridização In Situ , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Aves Domésticas/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sepse/genética , Virulência/genética
13.
Appl Environ Microbiol ; 77(22): 8080-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21948822

RESUMO

The aims of this study were to determine the ability of amplified fragment length polymorphism (AFLP) to differentiate Salmonella isolates from different units of swine production and to demonstrate the relatedness of Salmonella between farms and abattoirs by AFLP. Twenty-four farms in the midwestern United States were visited four times from 2006 to 2009. At each farm or abattoir visit, 30 fecal samples or 30 mesenteric lymph nodes were collected, respectively. A total of 220 Salmonella isolates were obtained, serotyped, and genotyped by multilocus sequence typing (MLST) and AFLP. These 220 isolates clustered into 21 serotypes, 18 MLST types, and 14 predominant AFLP clusters based on a genetic similarity threshold level of 60%. To assess genetic differentiation between farms, harvest cohorts, and pigs, analysis of molecular variance was conducted using AFLP data. The results showed 65.62% of overall genetic variation was attributed to variance among pigs, 27.21% to farms, and 7.17% to harvest cohorts. Variance components at the farm (P = 0.003) and pig (P = 0.001) levels were significant, but not at the harvest cohort level (P = 0.079). A second analysis, a permutation test using AFLP data, indicated that on-farm and at-abattoir Salmonella from pigs of the same farms were more related than from different farms. Therefore, among the three subtyping methods, serotyping, MLST, and AFLP, AFLP was the method that was able to differentiate among Salmonella isolates from different farms and link contamination at the abattoir to the farm of origin.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Salmonelose Animal/epidemiologia , Salmonella enterica/classificação , Salmonella enterica/genética , Doenças dos Suínos/epidemiologia , Animais , Análise por Conglomerados , Fezes/microbiologia , Genótipo , Linfonodos/microbiologia , Mesentério/microbiologia , Meio-Oeste dos Estados Unidos/epidemiologia , Epidemiologia Molecular/métodos , Tipagem de Sequências Multilocus , Salmonelose Animal/microbiologia , Salmonella enterica/isolamento & purificação , Sorotipagem , Suínos , Doenças dos Suínos/microbiologia
14.
Vet Microbiol ; 260: 109182, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315003

RESUMO

Immunosuppression can increase the susceptibility of chickens to other disease-causing pathogens and interfere with the efficacy of vaccination against those pathogens. Chicken anaemia virus (CAV) and infectious bursal disease virus (IBDV) are common causes of immunosuppression in chickens. Immunosuppression was induced by experimental infection with either CAV or IBDV to assess the effect of immunosuppression on the efficacy of vaccination with Mycoplasma gallisepticum strain ts-304 against infection with virulent M. gallisepticum, a common bacterial pathogen of chickens worldwide. Birds were experimentally infected with either CAV or IBDV at 1 week of age, before vaccination and challenge with M. gallisepticum to examine the effect of immunosuppression at the time of vaccination, or at 6 weeks of age, after vaccination against M. gallisepticum but before challenge with virulent M. gallisepticum, to investigate the effect of immunosuppression at the time of challenge. All birds were vaccinated with a single dose of the ts-304 vaccine at 3 weeks of age and experimentally challenged with the virulent M. gallisepticum strain Ap3AS at 8 weeks of age. In immunosuppressed chickens there was a reduction in protection offered by the ts-304 vaccine at two weeks after challenge, as measured by tracheal mucosal thicknesses, serum antibody levels against M. gallisepticum, air sac lesion scores and virulent M. gallisepticum load in the trachea. Immunosuppressed birds with detectable serum antibodies against M. gallisepticum were less likely to have tracheal lesions. This study has shown that immunosuppression caused by infection with CAV or IBDV can interfere with vaccination against mycoplasmosis in chickens.


Assuntos
Infecções por Birnaviridae/veterinária , Vírus da Anemia da Galinha/imunologia , Galinhas/imunologia , Infecções por Circoviridae/veterinária , Vírus da Doença Infecciosa da Bursa/imunologia , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/imunologia , Doenças das Aves Domésticas/prevenção & controle , Sacos Aéreos/virologia , Animais , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/virologia , Vírus da Anemia da Galinha/patogenicidade , Galinhas/microbiologia , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/virologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Terapia de Imunossupressão/veterinária , Vírus da Doença Infecciosa da Bursa/patogenicidade , Mucosa/virologia , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/prevenção & controle , Mycoplasma gallisepticum/patogenicidade , Doenças das Aves Domésticas/microbiologia , Traqueia/virologia
15.
Infect Immun ; 78(8): 3412-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20515929

RESUMO

Escherichia coli strains causing avian colibacillosis and human neonatal meningitis, urinary tract infections, and septicemia are collectively known as extraintestinal pathogenic E. coli (ExPEC). Characterization of ExPEC strains using various typing techniques has shown that they harbor many similarities, despite their isolation from different host species, leading to the hypothesis that ExPEC may have zoonotic potential. The present study examined a subset of ExPEC strains: neonatal meningitis E. coli (NMEC) strains and avian-pathogenic E. coli (APEC) strains belonging to the O18 serogroup. The study found that they were not easily differentiated on the basis of multilocus sequence typing, phylogenetic typing, or carriage of large virulence plasmids. Among the APEC strains examined, one strain was found to be an outlier, based on the results of these typing methods, and demonstrated reduced virulence in murine and avian pathogenicity models. Some of the APEC strains tested in a rat model of human neonatal meningitis were able to cause meningitis, demonstrating APEC's ability to cause disease in mammals, lending support to the hypothesis that APEC strains have zoonotic potential. In addition, some NMEC strains were able to cause avian colisepticemia, providing further support for this hypothesis. However, not all of the NMEC and APEC strains tested were able to cause disease in avian and murine hosts, despite the apparent similarities in their known virulence attributes. Thus, it appears that a subset of NMEC and APEC strains harbors zoonotic potential, while other strains do not, suggesting that unknown mechanisms underlie host specificity in some ExPEC strains.


Assuntos
Modelos Animais de Doenças , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Animais , Animais Recém-Nascidos , Técnicas de Tipagem Bacteriana , Galinhas , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Escherichia coli/classificação , Escherichia coli/genética , Infecções por Escherichia coli/patologia , Genótipo , Humanos , Meningites Bacterianas/microbiologia , Meningites Bacterianas/patologia , Camundongos , Filogenia , Plasmídeos , Ratos , Ratos Sprague-Dawley , Sepse/microbiologia , Sepse/patologia , Análise de Sequência de DNA , Fatores de Virulência/genética
16.
Infect Immun ; 78(5): 1931-42, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20160015

RESUMO

ColV plasmids of extraintestinal pathogenic Escherichia coli (ExPEC) encode a variety of fitness and virulence factors and have long been associated with septicemia and avian colibacillosis. These plasmids are found significantly more often in ExPEC, including ExPEC associated with human neonatal meningitis and avian colibacillosis, than in commensal E. coli. Here we describe pAPEC-O103-ColBM, a hybrid RepFIIA/FIB plasmid harboring components of the ColV pathogenicity island and a multidrug resistance (MDR)-encoding island. This plasmid is mobilizable and confers the ability to cause septicemia in chickens, the ability to cause bacteremia resulting in meningitis in the rat model of human disease, and the ability to resist the killing effects of multiple antimicrobial agents and human serum. The results of a sequence analysis of this and other ColV plasmids supported previous findings which indicated that these plasmid types arose from a RepFIIA/FIB plasmid backbone on multiple occasions. Comparisons of pAPEC-O103-ColBM with other sequenced ColV and ColBM plasmids indicated that there is a core repertoire of virulence genes that might contribute to the ability of some ExPEC strains to cause high-level bacteremia and meningitis in a rat model. Examination of a neonatal meningitis E. coli (NMEC) population revealed that approximately 58% of the isolates examined harbored ColV-type plasmids and that 26% of these plasmids had genetic contents similar to that of pAPEC-O103-ColBM. The linkage of the ability to confer MDR and the ability contribute to multiple forms of human and animal disease on a single plasmid presents further challenges for preventing and treating ExPEC infections.


Assuntos
DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Plasmídeos , Fatores de Virulência/genética , Zoonoses/microbiologia , Animais , Células Cultivadas , Galinhas , DNA Bacteriano/química , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Feminino , Ilhas Genômicas , Humanos , Recém-Nascido , Masculino , Dados de Sequência Molecular , Ratos , Análise de Sequência de DNA , Virulência
17.
Infect Immun ; 78(3): 898-906, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20028805

RESUMO

Autotransporters (AT) are widespread in Gram-negative bacteria, and many of them are involved in virulence. An open reading frame (APECO1_O1CoBM96) encoding a novel AT was located in the pathogenicity island of avian pathogenic Escherichia coli (APEC) O1's virulence plasmid, pAPEC-O1-ColBM. This 3.5-kb APEC autotransporter gene (aatA) is predicted to encode a 123.7-kDa protein with a 25-amino-acid signal peptide, an 857-amino-acid passenger domain, and a 284-amino-acid beta domain. The three-dimensional structure of AatA was also predicted by the threading method using the I-TASSER online server and then was refined using four-body contact potentials. Molecular analysis of AatA revealed that it is translocated to the cell surface, where it elicits antibody production in infected chickens. Gene prevalence analysis indicated that aatA is strongly associated with E. coli from avian sources but not with E. coli isolated from human hosts. Also, AatA was shown to enhance adhesion of APEC to chicken embryo fibroblast cells and to contribute to APEC virulence.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/fisiologia , Escherichia coli/patogenicidade , Doenças das Aves Domésticas/microbiologia , Fatores de Virulência/fisiologia , Animais , Anticorpos Antibacterianos/sangue , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/análise , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/química , Células Cultivadas , Galinhas , Citoplasma/química , Escherichia coli/química , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fibroblastos/microbiologia , Deleção de Genes , Teste de Complementação Genética , Ilhas Genômicas , Humanos , Microscopia de Fluorescência , Peso Molecular , Plasmídeos , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Virulência
18.
J Clin Microbiol ; 47(8): 2513-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19553581

RESUMO

Avian pathogenic Escherichia coli (APEC) is an important respiratory pathogen of poultry. Various virulence factors are responsible for determining the pathogenicity of these strains, and it is commonly believed they are encoded on large plasmids the strains carry. This study examined a series of strains, the pathogenicity of which had previously been determined by aerosol exposure, for possession of large plasmids and found all isolates carried at least one large plasmid, regardless of the level of virulence. Virulence-associated genes carried on these plasmids were also examined, and it was shown that highly virulent strains carried at least four virulence-associated genes on their largest plasmid. Two of the virulence-associated genes were shown to be chromosomally located in a strain of intermediate virulence, while no virulence-associated genes were carried by the low-virulence strain. The organization of the virulence-associated genes was shown to be highly conserved among APEC isolates of high virulence, supporting the concept of a conserved portion of the putative virulence region that contributes to the pathogenicity of APEC strains.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Escherichia coli/patogenicidade , Ordem dos Genes , Genes Bacterianos , Plasmídeos/isolamento & purificação , Doenças das Aves Domésticas/microbiologia , Fatores de Virulência/genética , Animais , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Aves Domésticas , Virulência
19.
Vet Microbiol ; 234: 8-16, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31213276

RESUMO

Mycoplasma bovis is an economically important pathogen of the cattle industry worldwide, and there is an urgent need for a more effective vaccine to control the diseases caused by this organism. Although the M. bovis genome sequence is available, very few gene functions of M. bovis have been experimentally determined, and a better understanding of the genes involved in pathogenesis are required for vaccine development. In this study, we compared the metabolite profiles of wild type M. bovis to a number of strains that each contained a transposon insertion into a putative transporter gene. Transport systems are thought to play an important role in survival of mycoplasmas, as they rely on the host for many nutrients. We also performed 13C-stable isotope labelling on strains with transposon insertions into putative glycerol transporters. Integration of metabolomic and bioinformatic analyses revealed unexpected results (when compared to genome annotation) for two mutants, with a putative amino acid transporter (MBOVPG45_0533) appearing more likely to transport nucleotide sugars, and a second mutant, a putative dicarboxylate/amino acid:cation (Na+ or H+) symporter (DAACS), more likely to function as a biopterin/folate transporter. This study also highlighted the apparent redundancy in some transport and metabolic pathways, such as the glycerol transport systems, even in an organism with a reduced genome. Overall, this study highlights the value of metabolomics for revealing the likely function of a number of transporters of M. bovis.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Biologia Computacional , Metabolômica , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/genética , Animais , Proteínas de Bactérias/genética , Biopterinas/metabolismo , Proteínas de Transporte/genética , Bovinos , Doenças dos Bovinos/microbiologia , Genoma Bacteriano , Redes e Vias Metabólicas , Mutação , Mycoplasma bovis/patogenicidade
20.
Microb Genom ; 5(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30672731

RESUMO

Avian pathogenic Escherichia coli (APEC) cause widespread economic losses in poultry production and are potential zoonotic pathogens. Genome sequences of 95 APEC from commercial poultry operations in four Australian states that carried the class 1 integrase gene intI1, a proxy for multiple drug resistance (MDR), were characterized. Sequence types ST117 (22/95), ST350 (10/95), ST429 and ST57 (each 9/95), ST95 (8/95) and ST973 (7/95) dominated, while 24 STs were represented by one or two strains. FII and FIB repA genes were the predominant (each 93/95, 98 %) plasmid incompatibility groups identified, but those of B/O/K/Z (25/95, 26 %) and I1 (24/95, 25 %) were also identified frequently. Virulence-associated genes (VAGs) carried by ColV and ColBM virulence plasmids, including those encoding protectins [iss (91/95, 96 %), ompT (91/95, 96 %) and traT (90/95, 95 %)], iron-acquisition systems [sitA (88/95, 93 %), etsA (87/95, 92 %), iroN (84/95, 89 %) and iucD/iutA (84/95, 89 %)] and the putative avian haemolysin hylF (91/95, 96 %), featured prominently. Notably, mobile resistance genes conferring resistance to fluoroquinolones, colistin, extended-spectrum ß-lactams and carbapenems were not detected in the genomes of these 95 APEC but carriage of the sulphonamide resistance gene, sul1 (59/95, 63 %), the trimethoprim resistance gene cassettes dfrA5 (48/95, 50 %) and dfrA1 (25/95, 27 %), the tetracycline resistance determinant tet(A) (51/95, 55 %) and the ampicillin resistance genes blaTEM-1A/B/C (48/95, 52 %) was common. IS26 (77/95, 81 %), an insertion element known to capture and mobilize a wide spectrum of antimicrobial resistance genes, was also frequently identified. These studies provide a baseline snapshot of drug-resistant APEC in Australia and their role in the carriage of ColV-like virulence plasmids.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/classificação , Escherichia coli/genética , Doenças das Aves Domésticas/microbiologia , Animais , Austrália , Toxinas Bacterianas/genética , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Integrases/genética , Plasmídeos , Análise de Sequência de DNA/métodos , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA