Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Technol Adv Mater ; 20(1): 786-795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447957

RESUMO

The possibility to manufacture perovskite solar cells (PSCs) at low temperatures paves the way to flexible and lightweight photovoltaic (PV) devices manufactured via high-throughput roll-to-roll processes. In order to achieve higher power conversion efficiencies, it is necessary to approach the radiative limit via suppression of non-radiative recombination losses. Herein, we performed a systematic voltage loss analysis for a typical low-temperature processed, flexible PSC in n-i-p configuration using vacuum deposited C60 as electron transport layer (ETL) and two-step hybrid vacuum-solution deposition for CH3NH3PbI3 perovskite absorber. We identified the ETL/absorber interface as a bottleneck in relation to non-radiative recombination losses, the quasi-Fermi level splitting (QFLS) decreases from ~1.23 eV for the bare absorber, just ~90 meV below the radiative limit, to ~1.10 eV when C60 is used as ETL. To effectively mitigate these voltage losses, we investigated different interfacial modifications via vacuum deposited interlayers (BCP, B4PyMPM, 3TPYMB, and LiF). An improvement in QFLS of ~30-40 meV is observed after interlayer deposition and confirmed by comparable improvements in the open-circuit voltage after implementation of these interfacial modifications in flexible PSCs. Further investigations on absorber/hole transport layer (HTL) interface point out the detrimental role of dopants in Spiro-OMeTAD film (widely employed HTL in the community) as recombination centers upon oxidation and light exposure.

2.
Sci Technol Adv Mater ; 20(1): 313-323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044022

RESUMO

Time-resolved photoluminescence (TRPL) is applied to determine an effective lifetime of minority charge carriers in semiconductors. Such effective lifetimes include recombination channels in the bulk as well as at the surfaces and interfaces of the device. In the case of Cu(In,Ga)Se2 absorbers used for solar cell applications, trapping of minority carriers has also been reported to impact the effective minority carrier lifetime. Trapping can be indicated by an increased temperature dependence of the experimentally determined photoluminescence decay time when compared to the temperature dependence of Shockley-Read-Hall (SRH) recombination alone and can lead to an overestimation of the minority carrier lifetime. Here, it is shown by technology computer-aided design (TCAD) simulations and by experiment that the intentional double-graded bandgap profile of high efficiency Cu(In,Ga)Se2 absorbers causes a temperature dependence of the PL decay time similar to trapping in case of a recombinative front surface. It is demonstrated that a passivated front surface results in a temperature dependence of the decay time that can be explained without minority carrier trapping and thus enables the assessment of the absorber quality by means of the minority carrier lifetime. Comparison with the absolute PL yield and the quasi-Fermi-level splitting (QFLS) corroborate the conclusion that the measured decay time corresponds to the bulk minority carrier lifetime of 250 ns for the double-graded CIGS absorber under investigation.

3.
Sci Technol Adv Mater ; 20(1): 26-34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719183

RESUMO

We explore the feasibility of Ag fiber meshes as electron transport layer for high-efficiency flexible Cu(In,Ga)Se2 (CIGS) solar cells. Woven meshes of Ag fibers after UV illumination and millisecond flash-lamp treatment results in a sheet resistance of 17 Ω/sq and a visible transmittance above 85%. Conductive Ag meshes are integrated into flexible CIGS cells as transparent conductive electrode (TCE) alone or together with layers of Al-doped ZnO (AZO) with various thickness of 0…900 nm. The Ag mesh alone is not able to function as a current collector. If used together with a thin AZO layer (50 nm), the Ag mesh markedly improves the fill factor and cell efficiency, in spite of the adverse mesh shadowing. When Ag mesh is combined with thicker (200 nm or 900 nm) AZO layers, no improvements in photovoltaic parameters are obtained. When comparing a hybrid TCE consisting of 50 nm AZO and Ag fiber mesh with a thick 900 nm reference AZO device, an improved charge carrier collection in the near-infrared range is observed. Regardless of the AZO thickness, the presence of Ag mesh slows down cell degradation upon mechanical tensile stress, which could be interesting for implementation into flexible thin film CIGS modules.

4.
Sci Technol Adv Mater ; 19(1): 683-692, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294395

RESUMO

The performance improvement of conventional CdTe solar cells is mainly limited by doping concentration and minority carrier life time. Alloying CdTe with an isovalent element changes its properties, for example its band gap and behaviour of dopants, which has a significant impact on its performance as a solar cell absorber. In this work, the structural, optical, and electronic properties of CdTe1-xSex films are examined for different Se concentrations. The band gap of this compound changes with composition with a minimum of 1.40 eV for x = 0.3. We show that with increasing x, the lattice constant of CdTe1-xSex decreases, which can influence the solubility of dopants. We find that alloying CdTe with Se changes the effect of Cu doping on the p-type conductivity in CdTe1-xSex, reducing the achievable charge carrier concentration with increasing x. Using a front surface CdTe1-xSex layer, compositional, structural and electronic grading is introduced to solar cells. The efficiency is increased, mostly due to an increase in the short-circuit current density caused by a combination of lower band gap and a better interface between the absorber and window layer, despite a loss in the open-circuit voltage caused by the lower band gap and reduced charge carrier concentration.

5.
Sci Technol Adv Mater ; 19(1): 263-270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707066

RESUMO

Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.

6.
Sci Technol Adv Mater ; 19(1): 396-410, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785230

RESUMO

Cu(In,Ga)Se2 based solar cells have reached efficiencies close to 23%. Further knowledge-driven improvements require accurate determination of the material properties. Here, we present refractive indices for all layers in Cu(In,Ga)Se2 solar cells with high efficiency. The optical bandgap of Cu(In,Ga)Se2 does not depend on the Cu content in the explored composition range, while the absorption coefficient value is primarily determined by the Cu content. An expression for the absorption spectrum is proposed, with Ga and Cu compositions as parameters. This set of parameters allows accurate device simulations to understand remaining absorption and carrier collection losses and develop strategies to improve performances.

7.
Sci Technol Adv Mater ; 19(1): 871-882, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479675

RESUMO

Structural defects such as voids and compositional inhomogeneities may affect the performance of Cu(In,Ga)Se2 (CIGS) solar cells. We analyzed the morphology and elemental distributions in co-evaporated CIGS thin films at the different stages of the CIGS growth by energy-dispersive x-ray spectroscopy in a transmission electron microscope. Accumulation of Cu-Se phases was found at crevices and at grain boundaries after the Cu-rich intermediate stage of the CIGS deposition sequence. It was found, that voids are caused by Cu out-diffusion from crevices and GBs during the final deposition stage. The Cu inhomogeneities lead to non-uniform diffusivities of In and Ga, resulting in lateral inhomogeneities of the In and Ga distribution. Two and three-dimensional simulations were used to investigate the impact of the inhomogeneities and voids on the solar cell performance. A significant impact of voids was found, indicating that the unpassivated voids reduce the open-circuit voltage and fill factor due to the introduction of free surfaces with high recombination velocities close to the CIGS/CdS junction. We thus suggest that voids, and possibly inhomogeneities, limit the efficiency of solar cells based on three-stage co-evaporated CIGS thin films. Passivation of the voids' internal surface may reduce their detrimental effects.

8.
Phys Chem Chem Phys ; 19(45): 30410-30417, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29131204

RESUMO

Recently recorded efficiencies of Cu(In,Ga)Se2 based solar cells were mainly achieved by surface treatment of the absorber that modifies the buffer-absorber interface region. However, only little is known about the electronic properties within this region. In this manuscript voltage dependent admittance spectroscopy is applied to low temperature grown Cu(In,Ga)Se2 based solar cells to detect near interface defect states in the absorber. Under non-equilibrium conditions even defect states close to the interface may cross the Fermi level and hence are detectable using capacitance based measurement methods, in contrast to the case of zero bias conditions. Such defects are of potential importance for understanding device limitations and hence, adequate characterization is necessary. A SCAPS model is developed including a near interface deep acceptor state, which explains the frequency and voltage dependence of the capacitance. Using the same model, also the experimental apparent doping density is explained.

9.
Small ; 12(38): 5339-5346, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27490026

RESUMO

Quantum efficiency measurements of state of the art Cu(In,Ga)Se2 (CIGS) thin film solar cells reveal current losses in the near infrared spectral region. These losses can be ascribed to inadequate optical absorption or poor collection of photogenerated charge carriers. Insight on the limiting mechanism is crucial for the development of more efficient devices. The electron beam induced current measurement technique applied on device cross-sections promises an experimental access to depth resolved information about the charge carrier collection probability. Here, this technique is used to show that charge carrier collection in CIGS deposited by multistage co-evaporation at low temperature is efficient over the optically active region and collection losses are minor as compared to the optical ones. Implications on the favorable absorber design are discussed. Furthermore, it is observed that the measurement is strongly affected by cross-section surface recombination and an accurate determination of the collection efficiency is not possible. Therefore it is proposed and shown that the use of an Al2 O3 layer deposited onto the cleaved cross-section significantly improves the accuracy of the measurement by reducing the surface recombination. A model for the passivation mechanism is presented and the passivation concept is extended to other solar cell technologies such as CdTe and Cu2 (Zn,Sn)(S,Se)4 .

10.
Nano Lett ; 15(5): 3334-40, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25844923

RESUMO

Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films. The method, based on selective dissolution of self-assembled and well-defined alkali condensates in water, opens up new research opportunities toward development of thin film solar cells with enhanced efficiency.


Assuntos
Álcalis/química , Nanoestruturas/química , Energia Solar , Luz Solar , Água/química
11.
Nat Mater ; 12(12): 1107-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185758

RESUMO

Thin-film photovoltaic devices based on chalcopyrite Cu(In,Ga)Se2 (CIGS) absorber layers show excellent light-to-power conversion efficiencies exceeding 20%. This high performance level requires a small amount of alkaline metals incorporated into the CIGS layer, naturally provided by soda lime glass substrates used for processing of champion devices. The use of flexible substrates requires distinct incorporation of the alkaline metals, and so far mainly Na was believed to be the most favourable element, whereas other alkaline metals have resulted in significantly inferior device performance. Here we present a new sequential post-deposition treatment of the CIGS layer with sodium and potassium fluoride that enables fabrication of flexible photovoltaic devices with a remarkable conversion efficiency due to modified interface properties and mitigation of optical losses in the CdS buffer layer. The described treatment leads to a significant depletion of Cu and Ga concentrations in the CIGS near-surface region and enables a significant thickness reduction of the CdS buffer layer without the commonly observed losses in photovoltaic parameters. Ion exchange processes, well known in other research areas, are proposed as underlying mechanisms responsible for the changes in chemical composition of the deposited CIGS layer and interface properties of the heterojunction.

12.
Phys Chem Chem Phys ; 16(19): 8843-51, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24675872

RESUMO

Thin film solar cells with a Cu(In,Ga)Se2 (CIGS) absorber layer achieved efficiencies above 20%. In order to achieve such high performance the absorber layer of the device has to be doped with alkaline material. One possibility to incorporate alkaline material is a post deposition treatment (PDT), where a thin layer of NaF and/or KF is deposited onto the completely grown CIGS layer. In this paper we discuss the effects of PDT with different alkaline elements (Na and K) on the electronic properties of CIGS solar cells. We demonstrate that whereas Na is more effective in increasing the hole concentration in CIGS, K significantly improves the pn-junction quality. The beneficial role of K in improving the PV performance is attributed to reduced recombination at the CdS/CIGS interface, as revealed by temperature dependent J-V measurements, due to a stronger electronically inverted CIGS surface region. Computer simulations with the software SCAPS are used to verify this model. Furthermore, we show that PDT with either KF or NaF has also a distinct influence on other electronic properties of the device such as the position of the N1 signal in admittance spectroscopy and the roll-over of the J-V curve at low temperature. In view of the presented results we conclude that a model based on a secondary diode at the CIGS/Mo interface can best explain these features.

13.
Microsc Microanal ; 20(4): 1246-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24690441

RESUMO

This work presents a systematic study that evaluates the feasibility and reliability of local band gap measurements of Cu(In,Ga)Se2 thin films by valence electron energy-loss spectroscopy (VEELS). The compositional gradients across the Cu(In,Ga)Se2 layer cause variations in the band gap energy, which are experimentally determined using a monochromated scanning transmission electron microscope (STEM). The results reveal the expected band gap variation across the Cu(In,Ga)Se2 layer and therefore confirm the feasibility of local band gap measurements of Cu(In,Ga)Se2 by VEELS. The precision and accuracy of the results are discussed based on the analysis of individual error sources, which leads to the conclusion that the precision of our measurements is most limited by the acquisition reproducibility, if the signal-to-noise ratio of the spectrum is high enough. Furthermore, we simulate the impact of radiation losses on the measured band gap value and propose a thickness-dependent correction. In future work, localized band gap variations will be measured on a more localized length scale to investigate, e.g., the influence of chemical inhomogeneities and dopant accumulations at grain boundaries.


Assuntos
Teste de Materiais/métodos , Semicondutores , Cobre , Gálio , Índio , Selênio , Energia Solar
14.
Adv Mater ; 36(21): e2311745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300183

RESUMO

The primary performance limitation in inverted perovskite-based solar cells is the interface between the fullerene-based electron transport layers and the perovskite. Atomic layer deposited thin aluminum oxide (AlOX) interlayers that reduce nonradiative recombination at the perovskite/C60 interface are developed, resulting in >60 millivolts improvement in open-circuit voltage and 1% absolute improvement in power conversion efficiency. Surface-sensitive characterizations indicate the presence of a thin, conformally deposited AlOx layer, functioning as a passivating contact. These interlayers work universally using different lead-halide-based absorbers with different compositions where the 1.55 electron volts bandgap single junction devices reach >23% power conversion efficiency. A reduction of metallic Pb0 is found and the compact layer prevents in- and egress of volatile species, synergistically improving the stability. AlOX-modified wide-bandgap perovskite absorbers as a top cell in a monolithic perovskite-silicon tandem enable a certified power conversion efficiency of 29.9% and open-circuit voltages above 1.92 volts for 1.17 square centimeters device area.

15.
Nat Energy ; 9(2): 172-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419691

RESUMO

The stabilization of grain boundaries and surfaces of the perovskite layer is critical to extend the durability of perovskite solar cells. Here we introduced a sulfonium-based molecule, dimethylphenethylsulfonium iodide (DMPESI), for the post-deposition treatment of formamidinium lead iodide perovskite films. The treated films show improved stability upon light soaking and remains in the black α phase after two years ageing under ambient condition without encapsulation. The DMPESI-treated perovskite solar cells show less than 1% performance loss after more than 4,500 h at maximum power point tracking, yielding a theoretical T80 of over nine years under continuous 1-sun illumination. The solar cells also display less than 5% power conversion efficiency drops under various ageing conditions, including 100 thermal cycles between 25 °C and 85 °C and an 1,050-h damp heat test.

16.
ACS Appl Energy Mater ; 6(24): 12515-12525, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38155875

RESUMO

Li-alloying of Cu2ZnSn(S, Se)4 (CZTSSe) absorbers is widely accepted for its beneficial influence on the performance of CZTSSe-based thin film solar cells. Given the degraded morphology characteristic of absorbers synthesized in the presence of excess Li concentrations, it is speculated that Li may be best incorporated into the absorber after synthesis. Here, we report an innovative method to add Li to synthesized CZTSSe by an electrochemical treatment using a liquid electrolyte. Our approach decouples Li addition from absorber synthesis, allowing one to possibly overcome morphology issues associated with high Li concentration. We show that Li is thereby transferred to the absorber and is incorporated into the crystal lattice. The resulting Li concentration in the absorber can be easily controlled by the treatment parameters. Using liquid electrolytes allows a straightforward disassembly of the lithiation setup and hence the fabrication of solar cells after electrochemical treatment. Electrochemically lithiated solar cells reached power conversion efficiencies of up to 9.0%. Further optimization of this innovative method is required to reduce expected interface issues resulting from the electrochemical treatment to demonstrate a gain in the power conversion efficiency of the CZTSSe solar cells. Finally, our results indicate strong lateral Li diffusion, which deserves further investigation. Moreover, the method could be transferred to other material systems, such as Cu(In, Ga)Se2 (CIGS), and adapted to treat layers with other alkali elements such as Na.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36758226

RESUMO

Tin fluoride (SnF2) is an indispensable additive for high-efficiency Pb-Sn perovskite solar cells (PSCs). However, the spatial distribution of SnF2 in the perovskite absorber is seldom investigated while essential for a comprehensive understanding of the exact role of the SnF2 additive. Herein, we revealed the spatial distribution of the SnF2 additive and made structure-optoelectronic properties-flexible photovoltaic performance correlation. We observed the chemical transformation of SnF2 to a fluorinated oxy-phase on the Pb-Sn perovskite film surface due to its rapid oxidation. In addition, at the buried perovskite interface, we detected and visualized the accumulation of F- ions. We found that the photoluminescence quantum yield of Pb-Sn perovskite reached the highest value with 10 mol % SnF2 in the precursor solution. When integrating the optimized absorber in flexible devices, we obtained the flexible Pb-Sn perovskite narrow bandgap (1.24 eV) solar cells with an efficiency of 18.5% and demonstrated 23.1% efficient flexible four-terminal all-perovskite tandem cells.

18.
Nat Mater ; 10(11): 857-61, 2011 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-21927005

RESUMO

Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

19.
J Mater Chem A Mater ; 9(47): 26680-26687, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34976398

RESUMO

The scalability of highly efficient organic-inorganic perovskite solar cells (PSCs) is one of the major challenges of solar module manufacturing. Various scalable methods have been explored to strive for uniform perovskite films of high crystal quality on large-area substrates, but each of these methods has individual limitations on the potential of successful commercialization of perovskite photovoltaics. Here, we report a fully scalable hybrid process, which combines vapor- and solution-based techniques to deposit high quality uniform perovskite films on large-area substrates. This two-step process does not use toxic solvents, and it further allows easy implementation of passivation strategies and additives. We fabricate PSCs based on this process and use blade coating to deposit a SnO2 electron transporting layer and Spiro-OMeTAD hole transporting layer without halogenated solvents in ambient air. The fabricated PSCs have achieved open-circuit voltage up to 1.16 V and power conversion efficiency of 18.7% with good uniformity on 5 cm × 5 cm substrates.

20.
Sci Rep ; 11(1): 3536, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574482

RESUMO

The sintering of alumina (Al2O3) traditionally occurs at high temperatures (up to ca. 1700 °C) and in significantly long times (up to several hours), which are required for the consolidation of the material by diffusion processes. Here we investigate the photonic sintering of alumina particles using millisecond flash lamp irradiation with extreme heating rates up to 108 K/min. The limitation of the low visible light absorption of alumina is resolved by adding colored α-Fe2O3 nanoparticles, which initiated the grain growth during sintering. After the millisecond-long light pulses from a xenon flash lamp, a bimodal mixture of α-Al2O3 precursor particles was sintered and iron segregation at the grain boundaries was observed. The proposed photonic sintering approach based on doping with colored centers may be extended to other refractory ceramics with low absorption in the visible light range once appropriate high-absorbing dopants are identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA