Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Phys Rev Lett ; 120(1): 016402, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350947

RESUMO

We investigated the crystal-electric field ground state of the 4f manifold in the strongly correlated topological insulator SmB_{6} using core-level nonresonant inelastic x-ray scattering. The directional dependence of the scattering function that arises from higher multipole transitions establishes unambiguously that the Γ_{8} quartet state of the Sm f^{5} J=5/2 configuration governs the ground-state symmetry and, hence, the topological properties of SmB_{6}. Our findings contradict the results of density functional calculations reported so far.

2.
Proc Natl Acad Sci U S A ; 111(42): 14979-84, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25294928

RESUMO

Topological insulators represent a novel state of matter with surface charge carriers having a massless Dirac dispersion and locked helical spin polarization. Many exciting experiments have been proposed by theory, yet their execution has been hampered by the extrinsic conductivity associated with the unavoidable presence of defects in Bi2Te3 and Bi2Se3 bulk single crystals, as well as impurities on their surfaces. Here we present the preparation of Bi2Te3 thin films that are insulating in the bulk and the four-point probe measurement of the conductivity of the Dirac states on surfaces that are intrinsically clean. The total amount of charge carriers in the experiment is of the order of 10(12) cm(-2) only, and mobilities up to 4,600 cm(2)/Vs have been observed. These values are achieved by carrying out the preparation, structural characterization, angle-resolved and X-ray photoemission analysis, and temperature-dependent four-point probe conductivity measurement all in situ under ultra-high-vacuum conditions. This experimental approach opens the way to prepare devices that can exploit the intrinsic topological properties of the Dirac surface states.

3.
Proc Natl Acad Sci U S A ; 111(13): 4798-802, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639519

RESUMO

Hybridization between conduction electrons and the strongly interacting f-electrons in rare earth or actinide compounds may result in new states of matter. Depending on the exact location of the concomitant hybridization gap with respect to the Fermi energy, a heavy fermion or an insulating ground state ensues. To study this entanglement locally, we conducted scanning tunneling microscopy and spectroscopy (STS) measurements on the "Kondo insulator" SmB6. The vast majority of surface areas investigated were reconstructed, but infrequently, patches of varying sizes of nonreconstructed Sm- or B-terminated surfaces also were found. On the smallest patches, clear indications for the hybridization gap with logarithmic temperature dependence (as expected for a Kondo system) and for intermultiplet transitions were observed. On nonreconstructed surface areas large enough for coherent cotunneling, we were able to observe clear-cut Fano resonances. Our locally resolved STS indicated considerable finite conductance on all surfaces independent of their structure, not proving but leaving open the possibility of the existence of a topologically protected surface state.

4.
Inorg Chem ; 55(19): 9816-9821, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27623249

RESUMO

Pb2FeOsO6 was prepared for the first time by using high-pressure and high-temperature synthesis techniques. This compound crystallizes into a B-site-ordered double-perovskite structure with cubic symmetry Fm3̅m, where the Fe and Os atoms are orderly distributed with a rock-salt-type manner. Structure refinement shows an Fe-Os antisite occupancy of about 16.6%. Structural analysis and X-ray absorption spectroscopy both demonstrate the charge combination to be Pb2Fe3+Os5+O6. A long-range ferrimagnetic transition is found to occur at about 280 K due to antiferromagnetic interactions between the adjacent Fe3+ and Os5+ spins with a straight (180°) Fe-O-Os bond angle, as confirmed by X-ray magnetic circular-dichroism measurements. First-principles theoretical calculations reveal the semiconducting behavior as well as the Fe3+(↑)Os5+(↓) antiferromagnetic coupling originating from the superexchange interactions between the half-filled 3d orbitals of Fe and t2g orbitals of Os.

5.
Proc Natl Acad Sci U S A ; 109(27): E1815-9, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22647607

RESUMO

Widespread adoption of superconducting technologies awaits the discovery of new materials with enhanced properties, especially higher superconducting transition temperatures T(c). The unexpected discovery of high T(c) superconductivity in cuprates suggests that the highest T(c)s occur when pressure or doping transform the localized and moment-bearing electrons in antiferromagnetic insulators into itinerant carriers in a metal, where magnetism is preserved in the form of strong correlations. The absence of this transition in Fe-based superconductors may limit their T(c)s, but even larger T(c)s may be possible in their isostructural Mn analogs, which are antiferromagnetic insulators like the cuprates. It is generally believed that prohibitively large pressures would be required to suppress the effects of the strong Hund's rule coupling in these Mn-based compounds, collapsing the insulating gap and enabling superconductivity. Indeed, no Mn-based compounds are known to be superconductors. The electronic structure calculations and X-ray diffraction measurements presented here challenge these long held beliefs, finding that only modest pressures are required to transform LaMnPO, isostructural to superconducting host LaFeAsO, from an antiferromagnetic insulator to a metallic antiferromagnet, where the Mn moment vanishes in a second pressure-driven transition. Proximity to these charge and moment delocalization transitions in LaMnPO results in a highly correlated metallic state, the familiar breeding ground of superconductivity.


Assuntos
Ferro/química , Lantânio/química , Magnetismo/métodos , Manganês/química , Polônio/química , Condutividade Elétrica , Impedância Elétrica , Elétrons , Óptica e Fotônica/métodos , Pressão , Temperatura
6.
Phys Rev Lett ; 113(21): 216403, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25479509

RESUMO

We present magnetization, specific heat, and (27)Al NMR investigations on YbFe2Al10 over a wide range in temperature and magnetic field. The magnetic susceptibility at low temperatures is strongly enhanced at weak magnetic fields, accompanied by a ln(T0/T) divergence of the low-T specific heat coefficient in zero field, which indicates a ground state of correlated electrons. From our hard-x-ray photoemission spectroscopy study, the Yb valence at 50 K is evaluated to be 2.38. The system displays valence fluctuating behavior in the low to intermediate temperature range, whereas above 400 K, Yb(3+) carries a full and stable moment, and Fe carries a moment of about 3.1 µB. The enhanced value of the Sommerfeld-Wilson ratio and the dynamic scaling of the spin-lattice relaxation rate divided by T[(27)(1/T1T)] with static susceptibility suggests admixed ferromagnetic correlations. (27)(1/T1T) simultaneously tracks the valence fluctuations from the 4f Yb ions in the high temperature range and field dependent antiferromagnetic correlations among partially Kondo screened Fe 3d moments at low temperature; the latter evolve out of an Yb 4f admixed conduction band.

7.
Phys Rev Lett ; 113(21): 217203, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25479519

RESUMO

SmFeO3 has attracted considerable attention very recently due to its reported multiferroic properties above room temperature. We have performed powder and single crystal neutron diffraction as well as complementary polarization dependent soft X-ray absorption spectroscopy measurements on floating-zone grown SmFeO3 single crystals in order to determine its magnetic structure. We found a k=0 G-type collinear antiferromagnetic structure that is not compatible with inverse Dzyaloshinskii-Moriya interaction driven ferroelectricity. While the structural data reveal a clear sign for magneto-elastic coupling at the Néel-temperature of ∼675 K, the dielectric measurements remain silent as far as ferroelectricity is concerned.

8.
Phys Rev Lett ; 108(22): 227203, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003646

RESUMO

We studied the symmetry of the Fe 3d wave function in magnetite below the Verwey temperature T(V) with resonant soft-x-ray diffraction. Although the lattice structure of the low-temperature phase of Fe(3)O(4) is well described by the pseudo-orthorhombic Pmca with a slight monoclinic P2/c distortion, we find that the 3d wave function does not reflect the Pmca symmetry, and its distortion toward monoclinic symmetry is by far larger than that of the lattice. The result supports a scenario in which the Verwey transition involves the ordering of t(2g) orbitals with complex-number coefficients.

9.
Phys Rev Lett ; 109(4): 046401, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-23006099

RESUMO

We have successfully determined the hitherto unknown sign of the B(4)(4) Stevens crystal-field parameter of the tetragonal heavy-fermion compound CeCu(2)Si(2) using vector q-dependent nonresonant inelastic x-ray scattering experiments at the cerium N(4,5) edge. The observed difference between the two different directions, q∥[100] and q∥[110], is due to the anisotropy of the crystal-field ground state in the (001) plane and is observable only because of the utilization of higher than dipole transitions possible in nonresonant inelastic x-ray scattering. This approach allows us to go beyond the specific limitations of dc magnetic susceptibility, inelastic neutron scattering, and soft x-ray spectroscopy, and provides us with a reliable information about the orbital state of the 4f electrons relevant for the quantitative modeling of the quasiparticles and their interactions in heavy-fermion systems.

10.
Phys Rev Lett ; 109(24): 247606, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368382

RESUMO

A new orthorhombic phase of the multiferroic BiFeO3 has been created via strain engineering by growing it on a NdScO(3)(110)(o) substrate. The tensile-strained orthorhombic BiFeO3 phase is ferroelectric and antiferromagnetic at room temperature. A combination of nonlinear optical second harmonic generation and piezoresponse force microscopy revealed that the ferroelectric polarization in the orthorhombic phase is along the in-plane {110}(pc) directions. In addition, the corresponding rotation of the antiferromagnetic axis in this new phase was observed using x-ray linear dichroism.

11.
Chemistry ; 18(20): 6272-83, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22461109

RESUMO

The synthesis and a joint experimental and theoretical study of the crystal structure and physical properties of the new ternary intermetallic compound TiGePt are presented. Upon heating, TiGePt exhibits an unusual structural phase transition with a huge volume contraction of about 10 %. The transformation is characterized by a strong change in the physical properties, in particular, by an insulator-metal transition. At temperatures below 885 °C TiGePt crystallizes in the cubic MgAgAs (half-Heusler) type (LT phase, space group F43m, a = 5.9349(2) Å). At elevated temperatures, the crystal structure of TiGePt transforms into the TiNiSi structure type (HT phase, space group Pnma, a = 6.38134(9) Å, b = 3.89081(5) Å, c = 7.5034(1) Å). The reversible, temperature-dependent structural transition was investigated by in-situ neutron powder diffraction and dilatometry measurements. The insulator-metal transition, indicated by resistivity measurements, is in accord with band structure calculations yielding a gap of about 0.9 eV for the LT phase and a metallic HT phase. Detailed analysis of the chemical bonding in both modifications revealed an essential change of the Ti-Pt and Ti-Ge interactions as the origin of the dramatic changes in the physical properties.

12.
Phys Rev Lett ; 107(6): 066404, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902348

RESUMO

We addressed the so-far unresolved issue concerning the Co valence in the superconducting bilayer hydrated Na(x)CoO(2) · yH(2)O (x∼0.35, y∼1.3) using soft x-ray absorption spectroscopy at the Co-L(2,3) and O-K edges. We find that the valence state of the Co lies in a narrow range from +3.3 to +3.4 for all studied Na(x)CoO(2) · yH(2)O samples and their deuterated analogue with T(c)'s ranging from 3.8 to 4.7 K. These valence values are far from the often claimed +3.7, the number based on the Na content only. We propose to modify the phase diagram accordingly, where the basic electronic structure of the superconducting phase is very close to that of the Na(0.7)CoO(2) system, suggesting that the presence of in-plane spin fluctuations could play an important role for the superconductivity.

13.
Phys Rev Lett ; 107(23): 236402, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22182107

RESUMO

We have been able to induce a linear dichroic signal in the Yb M(5) x-ray absorption white line of cubic YbInNi(4) by the application of a magnetic field. The nonzero integrated intensity of the magnetic field induced dichroic spectrum indicates a net noncubic 4f orbital polarization. A quantitative analysis of the temperature and field strength dependence establishes that the crystal-field ground state is a Γ(8) quartet. The results demonstrate the potential of magnetic field induced linear dichroism as a new powerful approach for the investigation of the degeneracy and orbital degrees of freedom of cubic heavy-fermion and Kondo systems.

14.
Phys Rev Lett ; 107(11): 116805, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-22026694

RESUMO

Using resonant x-ray spectroscopies combined with density functional calculations, we find an asymmetric biaxial strain-induced d-orbital response in ultrathin films of the correlated metal LaNiO3 which are not accessible in the bulk. The sign of the misfit strain governs the stability of an octahedral "breathing" distortion, which, in turn, produces an emergent charge-ordered ground state with an altered ligand-hole density and bond covalency. Control of this new mechanism opens a pathway to rational orbital engineering, providing a platform for artificially designed Mott materials.

15.
Phys Rev Lett ; 107(14): 147602, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107234

RESUMO

We report direct experimental evidence for a room-temperature, ∼130 µC/cm(2) ferroelectric polarization from the tetragonal-like BiFeO(3) phase. The physical origin of this remarkable enhancement of ferroelectric polarization has been investigated by a combination of x-ray absorption spectroscopy, scanning transmission electron microscopy, and first principles calculations. A large strain-induced Fe-ion displacement relative to the oxygen octahedra, combined with the contribution of Bi 6s lone pair electrons, is the mechanism driving the large ferroelectric polarization in this tetragonal-like phase.

16.
Nat Commun ; 11(1): 1984, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332788

RESUMO

The ability to determine the electronic structure of catalysts during electrochemical reactions is highly important for identification of the active sites and the reaction mechanism. Here we successfully applied soft X-ray spectroscopy to follow in operando the valence and spin state of the Co ions in Li2Co2O4 under oxygen evolution reaction (OER) conditions. We have observed that a substantial fraction of the Co ions undergo a voltage-dependent and time-dependent valence state transition from Co3+ to Co4+ accompanied by spontaneous delithiation, whereas the edge-shared Co-O network and spin state of the Co ions remain unchanged. Density functional theory calculations indicate that the highly oxidized Co4+ site, rather than the Co3+ site or the oxygen vacancy site, is mainly responsible for the high OER activity.

17.
Sci Rep ; 10(1): 18012, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093480

RESUMO

We have successfully grown centimeter-sized layered [Formula: see text] single crystals under high oxygen pressures of 120-150 bar by the floating zone technique. This enabled us to perform neutron scattering experiments where we observe close to quarter-integer magnetic peaks below [Formula: see text] that are accompanied by steep upwards dispersing spin excitations. Within the high-frequency Ni-O bond stretching phonon dispersion, a softening at the propagation vector for a checkerboard modulation can be observed. We were able to simulate the magnetic excitation spectra using a model that includes two essential ingredients, namely checkerboard charge disproportionation and nano phase separation. The results thus suggest that charge disproportionation is preferred instead of a Jahn-Teller distortion even for this layered [Formula: see text] system.

18.
J Phys Condens Matter ; 31(22): 225803, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30836348

RESUMO

We investigated the magnetoresistance (MR) of a single crystal of magnetite, Fe3O4. In an effort to distinguish between different contributions to the MR the samples were prepared in two different initial magnetic states, i.e. by either zero-field or by field cooling from room temperature. The different magnetic structures in this sample have a dramatic effect on the magnetoresistance: for initially zero-field-cooled conditions a negative MR of about -20% is observed just below the Verwey transition at [Formula: see text] K. For decreasing temperature the MR increases, changes sign at ∼78 K and reaches a record positive value of ∼45% at around 50 K. This behavior is completely absent in the field-cooled sample. Magnetization measurements corroborate an alignment of the easy magnetization direction in applied magnetic fields below [Formula: see text] as a cause of the strong effects observed in both, magnetization and MR. Our results point to a complex interplay of structural and magnetocrystalline effects taking place upon cooling Fe3O4 through [Formula: see text].

19.
Nat Commun ; 9(1): 43, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298977

RESUMO

The material class of rare earth nickelates with high Ni3+ oxidation state is generating continued interest due to the occurrence of a metal-insulator transition with charge order and the appearance of non-collinear magnetic phases within this insulating regime. The recent theoretical prediction for superconductivity in LaNiO3 thin films has also triggered intensive research efforts. LaNiO3 seems to be the only rare earth nickelate that stays metallic and paramagnetic down to lowest temperatures. So far, centimeter-sized impurity-free single crystal growth has not been reported for the rare earth nickelates material class since elevated oxygen pressures are required for their synthesis. Here, we report on the successful growth of centimeter-sized LaNiO3 single crystals by the floating zone technique at oxygen pressures of up to 150 bar. Our crystals are essentially free from Ni2+ impurities and exhibit metallic properties together with an unexpected but clear antiferromagnetic transition.

20.
Nat Commun ; 8: 15929, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28660878

RESUMO

The first known magnetic mineral, magnetite, has unusual properties, which have fascinated mankind for centuries; it undergoes the Verwey transition around 120 K with an abrupt change in structure and electrical conductivity. The mechanism of the Verwey transition, however, remains contentious. Here we use resonant inelastic X-ray scattering over a wide temperature range across the Verwey transition to identify and separate out the magnetic excitations derived from nominal Fe2+ and Fe3+ states. Comparison of the experimental results with crystal-field multiplet calculations shows that the spin-orbital dd excitons of the Fe2+ sites arise from a tetragonal Jahn-Teller active polaronic distortion of the Fe2+O6 octahedra. These low-energy excitations, which get weakened for temperatures above 350 K but persist at least up to 550 K, are distinct from optical excitations and are best explained as magnetic polarons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA