Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Lett ; 26(12): 2029-2042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882483

RESUMO

Although the role of host movement in shaping infectious disease dynamics is widely acknowledged, methodological separation between animal movement and disease ecology has prevented researchers from leveraging empirical insights from movement data to advance landscape scale understanding of infectious disease risk. To address this knowledge gap, we examine how movement behaviour and resource utilization by white-tailed deer (Odocoileus virginianus) determines blacklegged tick (Ixodes scapularis) distribution, which depend on deer for dispersal in a highly fragmented New York City borough. Multi-scale hierarchical resource selection analysis and movement modelling provide insight into how deer's movements contribute to the risk landscape for human exposure to the Lyme disease vector-I. scapularis. We find deer select highly vegetated and accessible residential properties which support blacklegged tick survival. We conclude the distribution of tick-borne disease risk results from the individual resource selection by deer across spatial scales in response to habitat fragmentation and anthropogenic disturbances.


Assuntos
Doenças Transmissíveis , Cervos , Ixodes , Infestações por Carrapato , Humanos , Animais , Animais Selvagens , Cidade de Nova Iorque , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Ixodes/fisiologia
2.
Viruses ; 14(12)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36560774

RESUMO

There is mounting evidence of SARS-CoV-2 spillover from humans into many domestic, companion, and wild animal species. Research indicates that humans have infected white-tailed deer, and that deer-to-deer transmission has occurred, indicating that deer could be a wildlife reservoir and a source of novel SARS-CoV-2 variants. We examined the hypothesis that the Omicron variant is actively and asymptomatically infecting the free-ranging deer of New York City. Between December 2021 and February 2022, 155 deer on Staten Island, New York, were anesthetized and examined for gross abnormalities and illnesses. Paired nasopharyngeal swabs and blood samples were collected and analyzed for the presence of SARS-CoV-2 RNA and antibodies. Of 135 serum samples, 19 (14.1%) indicated SARS-CoV-2 exposure, and 11 reacted most strongly to the wild-type B.1 lineage. Of the 71 swabs, 8 were positive for SARS-CoV-2 RNA (4 Omicron and 4 Delta). Two of the animals had active infections and robust neutralizing antibodies, revealing evidence of reinfection or early seroconversion in deer. Variants of concern continue to circulate among and may reinfect US deer populations, and establish enzootic transmission cycles in the wild: this warrants a coordinated One Health response, to proactively surveil, identify, and curtail variants of concern before they can spill back into humans.


Assuntos
COVID-19 , Cervos , Humanos , Animais , Cidade de Nova Iorque/epidemiologia , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/veterinária , Animais Selvagens
3.
Behav Processes ; 148: 46-48, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29341905

RESUMO

Mice have emerged as important models of auditory perception and acoustic communication. To study and model complex sound perception and communication, basic hearing abilities have to be established, yet intensity difference limens have not been measured in CBA/CaJ mice. Nine mice were trained using operant conditioning procedures with positive reinforcement to discriminate sound intensity across frequencies. Intensity difference limens were measured for 12, 16, 24, and 42 kHz tones at 10 and 30 dB sensation levels. Mice are capable of discriminating intensities across frequencies and sensation levels, but have higher intensity difference limens (IDLs) thresholds than other mammals.


Assuntos
Percepção Auditiva/fisiologia , Limiar Diferencial/fisiologia , Audição/fisiologia , Comunicação Animal , Animais , Condicionamento Operante/fisiologia , Camundongos , Camundongos Endogâmicos CBA , Modelos Animais , Som
4.
Hear Res ; 332: 217-222, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26427583

RESUMO

The cannabinoid receptor 1 (CB1R) is found at several stages in the auditory pathway, but its role in hearing is unknown. Hearing abilities were measured in CB1R knockout mice and compared to those of wild-type mice. Operant conditioning and the psychophysical Method of Constant Stimuli were used to measure audiograms, gap detection thresholds, and frequency difference limens in trained mice using the same methods and stimuli as in previous experiments. CB1R knockout mice showed deficits at frequencies above 8 kHz in their audiograms relative to wild-type mice. CB1R knockouts showed enhancements for detecting gaps in low-pass noisebursts relative to wild-type mice, but were similar for other noise conditions. Finally, the two groups of mice did not differ in their frequency discrimination abilities as measured by the frequency difference limens task. These experiments suggest that the CB1R is involved in auditory processing and lay the groundwork for future physiological experiments.


Assuntos
Vias Auditivas/metabolismo , Percepção Auditiva , Comportamento Animal , Sinais (Psicologia) , Percepção da Altura Sonora , Receptor CB1 de Canabinoide/deficiência , Detecção de Sinal Psicológico , Estimulação Acústica , Animais , Audiometria de Tons Puros , Vias Auditivas/fisiopatologia , Condicionamento Operante , Genótipo , Camundongos Endogâmicos CBA , Camundongos Knockout , Ruído/efeitos adversos , Mascaramento Perceptivo , Fenótipo , Receptor CB1 de Canabinoide/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA