Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Hum Evol ; 188: 103496, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38412694

RESUMO

Among extant great apes, orangutans climb most frequently. However, Bornean orangutans (Pongo pygmaeus) exhibit higher frequencies of terrestrial locomotion than do Sumatran orangutans (Pongo abelii). Variation in long bone cross-sectional geometry is known to reflect differential loading of the limbs. Thus, Bornean orangutans should show greater relative leg-to-arm strength than their Sumatran counterparts. Using skeletal specimens from museum collections, we measured two cross-sectional geometric measures of bone strength: the polar section modulus (Zpol) and the ratio of maximum to minimum area moments of inertia (Imax/Imin), at the midshaft of long bones in Bornean (n = 19) and Sumatran adult orangutans (n = 12) using medical CT and peripheral quantitative CT scans, and compared results to published data of other great apes. Relative leg-to-arm strength was quantified using ratios of femur and tibia over humerus, radius, and ulna, respectively. Differences between orangutan species and between sexes in median ratios were assessed using Wilcoxon rank sum tests. The tibia of Bornean orangutans was stronger relative to the humerus and the ulna than in Sumatran orangutans (p = 0.008 and 0.025, respectively), consistent with behavioral studies that indicate higher frequencies of terrestrial locomotion in the former. In three Zpol ratios, adult female orangutans showed greater leg-to-arm bone strength compared to flanged males, which may relate to females using their legs more during arboreal locomotion than in adult flanged males. A greater amount of habitat discontinuity on Borneo compared to Sumatra has been posited as a possible explanation for observed interspecific differences in locomotor behaviors, but recent camera trap studies has called this into question. Alternatively, greater frequencies of terrestriality in Pongo pygmaeus may be due to the absence of tigers on Borneo. The results of this study are consistent with the latter explanation given that habitat continuity was greater a century ago when our study sample was collected.


Assuntos
Hominidae , Pongo abelii , Feminino , Masculino , Animais , Pongo pygmaeus , Ecossistema , Comportamento Animal , Indonésia
2.
Proc Biol Sci ; 289(1969): 20212564, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35193404

RESUMO

Mountain gorillas are particularly inbred compared to other gorillas and even the most inbred human populations. As mountain gorilla skeletal material accumulated during the 1970s, researchers noted their pronounced facial asymmetry and hypothesized that it reflects a population-wide chewing side preference. However, asymmetry has also been linked to environmental and genetic stress in experimental models. Here, we examine facial asymmetry in 114 crania from three Gorilla subspecies using 3D geometric morphometrics. We measure fluctuating asymmetry (FA), defined as random deviations from perfect symmetry, and population-specific patterns of directional asymmetry (DA). Mountain gorillas, with a current population size of about 1000 individuals, have the highest degree of facial FA (explaining 17% of total facial shape variation), followed by Grauer gorillas (9%) and western lowland gorillas (6%), despite the latter experiencing the greatest ecological and dietary variability. DA, while significant in all three taxa, explains relatively less shape variation than FA does. Facial asymmetry correlates neither with tooth wear asymmetry nor increases with age in a mountain gorilla subsample, undermining the hypothesis that facial asymmetry is driven by chewing side preference. An examination of temporal trends shows that stress-induced developmental instability has increased over the last 100 years in these endangered apes.


Assuntos
Gorilla gorilla , Hominidae , Animais , Assimetria Facial/veterinária , Variação Genética , Gorilla gorilla/genética , Humanos
3.
Nature ; 532(7599): 366-9, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27027286

RESUMO

Homo floresiensis, a primitive hominin species discovered in Late Pleistocene sediments at Liang Bua (Flores, Indonesia), has generated wide interest and scientific debate. A major reason this taxon is controversial is because the H. floresiensis-bearing deposits, which include associated stone artefacts and remains of other extinct endemic fauna, were dated to between about 95 and 12 thousand calendar years (kyr) ago. These ages suggested that H. floresiensis survived until long after modern humans reached Australia by ~50 kyr ago. Here we report new stratigraphic and chronological evidence from Liang Bua that does not support the ages inferred previously for the H. floresiensis holotype (LB1), ~18 thousand calibrated radiocarbon years before present (kyr cal. BP), or the time of last appearance of this species (about 17 or 13-11 kyr cal. BP). Instead, the skeletal remains of H. floresiensis and the deposits containing them are dated to between about 100 and 60 kyr ago, whereas stone artefacts attributable to this species range from about 190 to 50 kyr in age. Whether H. floresiensis survived after 50 kyr ago--potentially encountering modern humans on Flores or other hominins dispersing through southeast Asia, such as Denisovans--is an open question.


Assuntos
Arqueologia , Fósseis , Hominidae , Datação Radiométrica , Silicatos de Alumínio , Animais , Austrália , Calibragem , Cavernas , Sedimentos Geológicos/análise , Vidro , Humanos , Indonésia , Compostos de Potássio , Quartzo , Fatores de Tempo , Incerteza
4.
J Hum Evol ; 158: 103048, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34340120

RESUMO

Homo naledi fossils from the Rising Star cave system provide important insights into the diversity of hand morphology within the genus Homo. Notably, the pollical (thumb) metacarpal (Mc1) displays an unusual suite of characteristics including a median longitudinal crest, a narrow proximal base, and broad flaring intrinsic muscle flanges. The present study evaluates the affinities of H. naledi Mc1 morphology via 3D geometric morphometric analysis of shaft shape using a broader comparative sample (n = 337) of fossil hominins, recent humans, apes, and cercopithecoid monkeys than in prior work. Results confirm that the H. naledi Mc1 is distinctive from most other hominins in being narrow at the proximal end but surmounted by flaring muscle flanges distally. Only StW 418 (Australopithecus cf. africanus) is similar in these aspects of shape. The gracile proximal shaft is most similar to cercopithecoids, Pan, Pongo, Australopithecus afarensis, and Australopithecus sediba, suggesting that H. naledi retains the condition primitive for the genus Homo. In contrast, Neandertal Mc1s are characterized by wide proximal bases and shafts, pinched midshafts, and broad distal flanges, while those of recent humans generally have straight shafts, less robust muscle flanges, and wide proximal shafts/bases. Although uncertainties remain regarding character polarity, the morphology of the H. naledi thumb might be interpreted as a retained intermediate state in a transformation series between the overall gracility of the shaft and the robust shafts of later hominins. Such a model suggests that the addition of broad medial and lateral muscle flanges to a primitively slender shaft was the first modification in transforming the Mc1 into the overall more robust structure exhibited by other Homo taxa including Neandertals and recent Homo sapiens in whose shared lineage the bases and proximal shafts became expanded, possibly as an adaptation to the repeated recruitment of powerful intrinsic pollical muscles.


Assuntos
Fósseis , Hominidae/anatomia & histologia , Ossos Metacarpais/anatomia & histologia , Animais , Evolução Biológica , Cavernas , Haplorrinos/anatomia & histologia , Humanos , Homem de Neandertal/anatomia & histologia
5.
Proc Natl Acad Sci U S A ; 115(35): 8746-8751, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104373

RESUMO

The primate foot functions as a grasping organ. As such, its bones, soft tissues, and joints evolved to maximize power and stability in a variety of grasping configurations. Humans are the obvious exception to this primate pattern, with feet that evolved to support the unique biomechanical demands of bipedal locomotion. Of key functional importance to bipedalism is the morphology of the joints at the forefoot, known as the metatarsophalangeal joints (MTPJs), but a comprehensive analysis of hominin MTPJ morphology is currently lacking. Here we present the results of a multivariate shape and Bayesian phylogenetic comparative analyses of metatarsals (MTs) from a broad selection of anthropoid primates (including fossil apes and stem catarrhines) and most of the early hominin pedal fossil record, including the oldest hominin for which good pedal remains exist, Ardipithecus ramidus Results corroborate the importance of specific bony morphologies such as dorsal MT head expansion and "doming" to the evolution of terrestrial bipedalism in hominins. Further, our evolutionary models reveal that the MT1 of Ar. ramidus shifts away from the reconstructed optimum of our last common ancestor with apes, but not necessarily in the direction of modern humans. However, the lateral rays of Ar. ramidus are transformed in a more human-like direction, suggesting that they were the digits first recruited by hominins into the primary role of terrestrial propulsion. This pattern of evolutionary change is seen consistently throughout the evolution of the foot, highlighting the mosaic nature of pedal evolution and the emergence of a derived, modern hallux relatively late in human evolution.


Assuntos
Evolução Biológica , Hominidae , Ossos do Metatarso , Filogenia , Animais , Hominidae/anatomia & histologia , Hominidae/fisiologia , Ossos do Metatarso/anatomia & histologia , Ossos do Metatarso/fisiologia
6.
J Hum Evol ; 146: 102852, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32781349

RESUMO

Wallace's Line demarcates a biogeographical boundary between the Indomalaya and Australasian ecoregions. Most placental mammalian genera, for example, occur to the west of this line, whereas most marsupial genera occur to the east. However, macaque monkeys are unusual because they naturally occur on both western and eastern sides. To further explore this anomalous distribution, we analyzed 222 mitochondrial genomes from ∼20 macaque species, including new genomes from 60 specimens. These comprise a population sampling of most Sulawesi macaques, Macaca fascicularis (long-tailed macaques) specimens that were collected by Alfred R. Wallace and specimens that were recovered during archaeological excavations at Liang Bua, a cave on the Indonesian island of Flores. In M. fascicularis, three mitochondrial lineages span the southernmost portion of Wallace's Line between Bali and Lombok, and divergences within these lineages are contemporaneous with, and possibly mediated by, past dispersals of modern human populations. Near the central portion of Wallace's Line between Borneo and Sulawesi, a more ancient dispersal of macaques from mainland Asia to Sulawesi preceded modern human colonization, which was followed by rapid dispersal of matrilines and was subsequently influenced by recent interspecies hybridization. In contrast to previous studies, we find no strong signal of recombination in most macaque mitochondrial genomes. These findings further characterize macaque evolution before and after modern human dispersal throughout Southeast Asia and point to possible effects on biodiversity of ancient human cultural diasporas.


Assuntos
Distribuição Animal , Genoma Mitocondrial , Migração Humana , Macaca/fisiologia , Animais , Humanos , Indonésia , Macaca/genética , Filipinas
8.
J Hum Evol ; 130: 45-60, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31010543

RESUMO

Liang Bua, the type locality of Homo floresiensis, is a limestone cave located in the western part of the Indonesian island of Flores. The relatively continuous stratigraphic sequence of the site spans the past ∼190 kyr and contains ∼275,000 taxonomically identifiable vertebrate skeletal elements, ∼80% of which belong to murine rodent taxa (i.e., rats). Six described genera are present at Liang Bua (Papagomys, Spelaeomys, Hooijeromys, Komodomys, Paulamys, and Rattus), one of which, Hooijeromys, is newly recorded in the site deposits, being previously known only from Early to Middle Pleistocene sites in central Flores. Measurements of the proximal femur (n = 10,212) and distal humerus (n = 1186) indicate five murine body size classes ranging from small (mouse-sized) to giant (common rabbit-sized) are present. The proportions of these five classes across successive stratigraphic units reveal two major changes in murine body size distribution due to significant shifts in the abundances of more open habitat-adapted medium-sized murines versus more closed habitat-adapted smaller-sized ones. One of these changes suggests a modest increase in available open habitats occurred ∼3 ka, likely the result of anthropogenic changes to the landscape related to farming by modern human populations. The other and more significant change occurred ∼60 ka suggesting a rapid shift from more open habitats to more closed conditions at this time. The abrupt reduction of medium-sized murines, along with the disappearance of H. floresiensis, Stegodon florensis insularis (an extinct proboscidean), Varanus komodoensis (Komodo dragon), Leptoptilos robustus (giant marabou stork), and Trigonoceps sp. (vulture) at Liang Bua ∼60-50 ka, is likely the consequence of these animals preferring and tracking more open habitats to elsewhere on the island. If correct, then the precise timing and nature of the extinction of H. floresiensis and its contemporaries must await new discoveries at Liang Bua or other as yet unexcavated sites on Flores.


Assuntos
Meio Ambiente , Fósseis , Hominidae , Murinae/fisiologia , Animais , Biodiversidade , Tamanho Corporal , Indonésia
9.
J Hum Evol ; 124: 52-74, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30173885

RESUMO

Liang Bua, the type site of Homo floresiensis, is a limestone cave on the Indonesian island of Flores with sedimentary deposits currently known to range in age from about 190 thousand years (ka) ago to the present. Recent revision of the stratigraphy and chronology of this depositional sequence suggests that skeletal remains of H. floresiensis are between ∼100 and 60 ka old, while cultural evidence of this taxon occurs until ∼50 ka ago. Here we examine the compositions of the faunal communities and stone artifacts, by broad taxonomic groups and raw materials, throughout the ∼190 ka time interval preserved in the sequence. Major shifts are observed in both the faunal and stone artifact assemblages that reflect marked changes in paleoecology and hominin behavior, respectively. Our results suggest that H. floresiensis and Stegodon florensis insularis, along with giant marabou stork (Leptoptilos robustus) and vulture (Trigonoceps sp.), were likely extinct by ∼50 ka ago. Moreover, an abrupt and statistically significant shift in raw material preference due to an increased use of chert occurs ∼46 thousand calibrated radiocarbon (14C) years before present (ka cal. BP), a pattern that continues through the subsequent stratigraphic sequence. If an increased preference for chert does, in fact, characterize Homo sapiens assemblages at Liang Bua, as previous studies have suggested (e.g., Moore et al., 2009), then the shift observed here suggests that modern humans arrived on Flores by ∼46 ka cal. BP, which would be the earliest cultural evidence of modern humans in Indonesia.


Assuntos
Biota , Aves , Extinção Biológica , Fósseis , Hominidae , Mamíferos , Animais , Arqueologia , Cavernas , Indonésia
10.
Proc Natl Acad Sci U S A ; 111(1): 121-4, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344276

RESUMO

Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato.


Assuntos
Antropologia Física/métodos , Hominidae/fisiologia , Ossos Metacarpais/anatomia & histologia , Animais , Evolução Biológica , Osso e Ossos/fisiologia , Feminino , Fósseis , Humanos , Quênia , Masculino , Ossos Metacarpais/fisiologia
11.
Am J Phys Anthropol ; 159(Suppl 61): S4-S18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26808111

RESUMO

Gorillas living in western central Africa (Gorilla gorilla) are morphologically and genetically distinguishable from those living in eastern central Africa (Gorilla beringei). Genomic analyses show eastern gorillas experienced a significant reduction in population size during the Pleistocene subsequent to geographical isolation from their western counterparts. However, how these results relate more specifically to the recent biogeographical and evolutionary history of eastern gorillas remains poorly understood. Here we show that two rare morphological traits are present in the hands and feet of both eastern gorilla subspecies at strikingly high frequencies (>60% in G. b. graueri; ∼28% in G. b. beringei) in comparison with western gorillas (<1%). The intrageneric distribution of these rare traits suggests that they became common among eastern gorillas after diverging from their western relatives during the early to middle Pleistocene. The extremely high frequencies observed among grauer gorillas-which currently occupy a geographic range more than ten times the size of that of mountain gorillas-imply that grauers originated relatively recently from a small founding population of eastern gorillas. Current paleoenvironmental, geological, and biogeographical evidence supports the hypothesis that a small group of eastern gorillas likely dispersed westward from the Virungas into present-day grauer range in the highlands just north of Lake Kivu, either immediately before or directly after the Younger Dryas interval. We propose that as the lowland forests of central Africa expanded rapidly during the early Holocene, they became connected with the expanding highland forests along the Albertine Rift and enabled the descendants of this small group to widely disperse. The descendant populations significantly expanded their geographic range and population numbers relative to the gorillas of the Virunga Mountains and the Bwindi-Impenetrable Forest, ultimately resulting in the grauer gorilla subspecies recognized today. This founder-effect hypothesis offers some optimism for modern conservation efforts to save critically endangered eastern gorillas from extinction.


Assuntos
Evolução Biológica , Gorilla gorilla , África Central , África Oriental , Animais , Meio Ambiente , Feminino , Ossos do Pé/anatomia & histologia , Fósseis , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/classificação , Gorilla gorilla/genética , Gorilla gorilla/fisiologia , Masculino , Filogenia
12.
J Hum Evol ; 86: 136-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26276534

RESUMO

Modern human metatarsal heads are typically described as "dorsally domed," mediolaterally wide, and dorsally flat. Despite the apparent functional importance of these features in forefoot stability during bipedalism, the distinctiveness of this morphology has not been quantitatively evaluated within a broad comparative framework. In order to use these features to reconstruct fossil hominin locomotor behaviors with any confidence, their connection to human bipedalism should be validated through a comparative analysis of other primates with different locomotor behaviors and foot postures, including species with biomechanical demands potentially similar to those of bipedalism (e.g., terrestrial digitigrady). This study explores shape variation in the distal metatarsus among humans and other extant catarrhines using three-dimensional geometric morphometrics (3 DGM). Shape differences among species in metatarsal head morphology are well captured by the first two principal components of Procrustes shape coordinates, and these two components summarize most of the variance related to "dorsal doming" and "dorsal expansion." Multivariate statistical tests reveal significant differences among clades in overall shape, and humans are reliably distinguishable from other species by aspects of shape related to a greater degree of dorsal doming. Within quadrupeds, terrestrial species also trend toward more domed metatarsal heads, but not to the extent seen in humans. Certain aspects of distal metatarsus shape are likely related to habitual dorsiflexion of the metatarsophalangeal joints, but the total morphological pattern seen in humans is distinct. These comparative results indicate that this geometric morphometric approach is useful to characterize the complexity of metatarsal head morphology and will help clarify its relationship with function in fossil primates, including early hominins.


Assuntos
Cercopithecidae/anatomia & histologia , Cercopithecidae/fisiologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Ossos do Metatarso/anatomia & histologia , Ossos do Metatarso/fisiologia , Caminhada/fisiologia , Animais , Evolução Biológica , Fósseis , Humanos
13.
Am J Phys Anthropol ; 153(4): 526-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24374860

RESUMO

Gorillas occupy a variety of habitats from the west coast to eastern central Africa. These habitats differ considerably in altitude, which has a pronounced effect on forest ecology. Although all gorillas are obligate terrestrial knuckle-walking quadrupeds, those that live in lowland habitats eat fruits and climb more often than do those living in highland habitats. Here we test the hypothesis that gorilla talus morphology falls along a morphocline that tracks locomotor function related to a more inverted or everted foot set. This proposed morphocline predicts that gorillas living in lowland habitats may have a talocrural joint configured to facilitate a more medially oriented foot during climbing, suggesting that they may be more adaptively committed to arboreality than gorillas living in highland habitats. To quantify the relative set of the foot in gorillas, we chose two three-dimensional measurements of the talocrural joint: mediolateral curvature of the trochlea and relative surface area of the lateral malleolus. Our results show that, in comparison to their eastern counterparts, western gorillas have talar features that reflect a more medially directed sole of the foot. This morphology likely facilitates foot placement in a wider range of positions and minimization of shearing stresses across the joint when the foot is loaded on more curved or vertically oriented substrates as occurs during climbing and other arboreal behaviors. In contrast, eastern gorilla talar morphology is consistent with habitual placement of the foot with the sole directed more inferiorly, suggesting more effective loading during plantigrade push-off on terrestrial substrates.


Assuntos
Gorilla gorilla/anatomia & histologia , Gorilla gorilla/classificação , Tálus/anatomia & histologia , Análise de Variância , Animais , Calcâneo/anatomia & histologia , Calcâneo/fisiologia , Ecossistema , Feminino , Gorilla gorilla/fisiologia , Masculino , Tálus/fisiologia
14.
Am J Biol Anthropol ; 183(3): e24728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36924247

RESUMO

OBJECTIVES: Primates employ wrist ulnar deviation during a variety of locomotor and manipulative behaviors. Extant hominoids share a derived condition in which the ulnar styloid process has limited articulation or is completely separated from the proximal carpals, which is often hypothesized to increase ulnar deviation range of motion. Acute angulation of the hamate's triquetral facet is also hypothesized to facilitate ulnar deviation mobility and mechanics. In this study, we test these longstanding ideas. METHODS: Three-dimensional (3D) carpal kinematics were examined using a cadaveric sample of Pan troglodytes, Pongo sp., and five monkey species. Ulnar styloid projection and orientation of the hamate's triquetral facet were quantified using 3D models. RESULTS: Although carpal rotation patterns in Pan and Pongo were uniquely similar in some respects, P. troglodytes exhibited overall kinematic similarity with large terrestrial cercopithecoids (Papio and Mandrillus). Pongo, Macaca, and Ateles had high wrist ulnar deviation ranges of motion, but Pongo did this via a unique mechanism. In Pongo, the triquetrum functions as a distal carpal rather than part of the proximal row. Ulnar styloid projection and wrist ulnar deviation range of motion were not correlated but ulnar deviation range of motion and the triquetrohamate facet orientation were correlated. CONCLUSIONS: Increased ulnar deviation mobility is not the function of ulnar styloid withdrawal in hominoids. Instead, this feature probably reduces stress on the ulnar side wrist or is a byproduct of adaptations that increase supination. Orientation of the hamate's triquetral facet offers some potential to reconstruct ulnar deviation mobility in extinct primates.


Assuntos
Primatas , Punho , Humanos , Animais , Punho/anatomia & histologia , Fenômenos Biomecânicos , Ulna/anatomia & histologia , Haplorrinos , Rotação , Papio , Macaca , Pongo
15.
Am J Biol Anthropol ; 183(3): e24824, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37493308

RESUMO

OBJECTIVES: This research examines whether the distribution of trabecular bone in the proximal capitates of extant hominids, as well as several fossil hominin taxa, is associated with the oblique path of the midcarpal joint known as the dart-thrower's motion (DTM). MATERIALS AND METHODS: We analyzed proximal capitates from extant (Pongo n = 12; Gorilla n = 11; Pan n = 10; fossil and recent Homo sapiens n = 29) and extinct (Australopithecus sediba n = 2; Homo naledi n = 1; Homo floresiensis n = 2; Neandertals n = 3) hominids using a new canonical holistic morphometric analysis, which quantifies and visualizes the distribution of trabecular bone using relative bone volume as a fraction of total volume (rBV/TV). RESULTS: Homo sapiens and Neandertals had a continuous band of high rBV/TV that extended across the scaphoid, lunate, and hamate subarticular regions, but other fossil hominins and extant great apes did not. A. sediba expressed a distinct combination of human-like and Pan-like rBV/TV distribution. Both H. floresiensis and H. naledi had high rBV/TV on the ulnar-side of the capitate but low rBV/TV on the radial-side. CONCLUSION: The proximal capitates of H. sapiens and Neandertals share a distinctive distribution of trabecular bone that suggests that these two species of Homo regularly load(ed) their midcarpal joints along the full extent of the oblique path of the DTM. The observed pattern in A. sediba suggests that human-like stress at the capito-scaphoid articular surface was combined with Pan-like wrist postures, whereas the patterns in H. floresiensis and H. naledi suggest their midcarpal joints were loaded differently from that of H. sapiens and Neandertals.


Assuntos
Articulações do Carpo , Hominidae , Homem de Neandertal , Animais , Humanos , Osso Esponjoso/anatomia & histologia , Fósseis , Gorilla gorilla , Pongo
16.
J Hum Evol ; 64(2): 109-29, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23290261

RESUMO

The carpals from the Homo floresiensis type specimen (LB1) lack features that compose the shared, derived complex of the radial side of the wrist in Neandertals and modern humans. This paper comprises a description and three-dimensional morphometric analysis of new carpals from at least one other individual at Liang Bua attributed to H. floresiensis: a right capitate and two hamates. The new capitate is smaller than that of LB1 but is nearly identical in morphology. As with capitates from extant apes, species of Australopithecus, and LB1, the newly described capitate displays a deeply-excavated nonarticular area along its radial aspect, a scaphoid facet that extends into a J-hook articulation on the neck, and a more radially-oriented second metacarpal facet; it also lacks an enlarged palmarly-positioned trapezoid facet. Because there is no accommodation for the derived, palmarly blocky trapezoid that characterizes Homo sapiens and Neandertals, this individual most likely had a plesiomorphically wedge-shaped trapezoid (like LB1). Morphometric analyses confirm the close similarity of the new capitate and that of LB1, and are consistent with previous findings of an overall primitive articular geometry. In general, hamate morphology is more conserved across hominins, and the H. floresiensis specimens fall at the far edge of the range of variation for H. sapiens in a number of metrics. However, the hamate of H. floresiensis is exceptionally small and exhibits a relatively long, stout hamulus lacking the oval-shaped cross-section characteristic of human and Neandertal hamuli (variably present in australopiths). Documentation of a second individual with primitive carpal anatomy from Liang Bua, along with further analysis of trapezoid scaling relative to the capitate in LB1, refutes claims that the wrist of the type specimen represents a modern human with pathology. In total, the carpal anatomy of H. floresiensis supports the hypothesis that the lineage leading to the evolution of this species originated prior to the cladogenetic event that gave rise to modern humans and Neandertals.


Assuntos
Capitato/anatomia & histologia , Hamato/anatomia & histologia , Hominidae/anatomia & histologia , Animais , Biometria , Feminino , Fósseis , Hominidae/classificação , Humanos , Indonésia , Masculino , Filogenia
17.
Am J Primatol ; 75(5): 450-63, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23208801

RESUMO

Understanding the life history correlates of ontogenetic differences in hominoid brain growth requires information from multiple species. At present, however, data on how brain size changes over the course of development are only available from chimpanzees and modern humans. In this study, we examined brain growth in wild Virunga mountain gorillas using data derived from necropsy reports (N = 34) and endocranial volume (EV) measurements (N = 86). The youngest individual in our sample was a 10-day-old neonatal male with a brain mass of 208 g, representing 42% of the adult male average. Our results demonstrate that Virunga mountain gorillas reach maximum adult-like brain mass by 3-4 years of age; adult-sized EV is reached by the time the first permanent molars emerge. This is in contrast to the pattern observed in chimpanzees, which despite their smaller absolute brain size, reportedly attain adult brain mass approximately 1 year later than Virunga mountain gorillas. Our findings demonstrate that brain growth is completed early in Virunga mountain gorillas compared to other great apes studied thus far, in a manner that appears to be linked with other life history characteristics of this population.


Assuntos
Envelhecimento/fisiologia , Animais Selvagens , Encéfalo/crescimento & desenvolvimento , Gorilla gorilla/crescimento & desenvolvimento , Animais , República Democrática do Congo , Feminino , Masculino , Ruanda , Uganda
18.
Integr Comp Biol ; 63(4): 907-921, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37061788

RESUMO

Among extant great apes, orangutans are considered the most sexually dimorphic in body size. However, the expression of sexual dimorphism in orangutans is more complex than simply males being larger than females. At sexual maturity, some male orangutans develop cheek pads (flanges), while other males remain unflanged even after becoming reproductively capable. Sometimes flange development is delayed in otherwise sexually mature males for a few years. In other cases, flange development is delayed for many years or decades, with some males even spending their entire lifespan as unflanged adults. Thus, unflanged males of various chronological ages can be mistakenly identified as "subadults." Unflanged adult males are typically described as "female-sized," but this may simply reflect the fact that unflanged male body size has only ever been measured in peri-pubescent individuals. In this study, we measured the skeletons of 111 wild adult orangutans (Pongo spp.), including 20 unflanged males, 45 flanged males, and 46 females, resulting in the largest skeletal sample of unflanged males yet studied. We assessed long bone lengths (as a proxy for stature) for all 111 individuals and recorded weights-at-death, femoral head diameters, bi-iliac breadths, and long bone cross-sectional areas (CSA) (as proxies for mass) for 27 of these individuals, including seven flanged males, three adult confirmed-unflanged males, and three young adult likely-unflanged males. ANOVA and Kruskal-Wallis tests with Tukey and Dunn post-hoc pairwise comparisons, respectively, showed that body sizes for young adult unflanged males are similar to those of the adult females in the sample (all P ≥ 0.09 except bi-iliac breadth), whereas body sizes for adult unflanged males ranged between those of adult flanged males and adult females for several measurements (all P < 0.001). Thus, sexually mature male orangutans exhibit body sizes that range from the female end of the spectrum to the flanged male end of the spectrum. These results exemplify that the term "sexual dimorphism" fails to capture the full range of variation in adult orangutan body size. By including adult unflanged males in analyses of body size and other aspects of morphology, not as aberrations but as an expected part of orangutan variation, we may begin to shift the way that we think about features typically considered dichotomous according to biological sex.

19.
R Soc Open Sci ; 9(7): 220435, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35845853

RESUMO

Liang Bua (Flores, Indonesia) has yielded remains of a faunal community that included small-bodied and small-brained hominins, dwarf proboscideans, Komodo dragons, vultures and giant marabou storks (Leptoptilos robustus). Previous research suggested that L. robustus evolved from a smaller L eptoptilos dubius-like Middle Pleistocene ancestor and may have been flightless. However, analyses of this species' considerably expanded hypodigm (n = 43, MNI = 5), which includes 21 newly discovered bones described here for the first time, reveals that the wing bones of L. robustus were well-developed and this species was almost certainly capable of active flight. Moreover, L. robustus bones are broadly similar to Leptoptilos falconeri remains from sites in Africa and Eurasia, and its overall size range is comparable to fossils attributed to L. falconeri and similar specimens, as well as those of Leptoptilos lüi (China) and Leptoptilos titan (Java). This suggests that a Pleistocene dispersal of L. falconeri into Island Southeast Asia may have given rise to populations of giant marabou storks in this region. As L. robustus and L. titan are the most recent known representatives of these once plentiful giant marabou storks, Island Southeast Asia likely acted as a refugium for the last surviving members of this lineage.

20.
Am J Biol Anthropol ; 177(3): 581-602, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35755956

RESUMO

Current approaches to quantify phalangeal curvature assume that the long axis of the bone's diaphysis approximates the shape of a portion of a circle (included angle method) or a parabola (second-degree polynomial method). Here we developed, tested, and employed an alternative geometric morphometrics-based approach to quantify diaphysis shape of proximal phalanges in humans, apes and monkeys with diverse locomotor behaviors. 100 landmarks of the central longitudinal axis were extracted from 3D surface models and analyzed using 2DGM methods, including Generalized Procrustes Analyses. Principal components analyses were performed and PC1 scores (>80% of variation) represented the dorsopalmar shape of the bone's central longitudinal axis and separated taxa consistently and in accord with known locomotor behavioral profiles. The most suspensory taxa, including orangutans, hylobatids and spider monkeys, had significantly lower PC1 scores reflecting the greatest amounts of phalangeal curvature. In contrast, bipedal humans and the quadrupedal cercopithecoid monkeys sampled (baboons, proboscis monkeys) exhibited significantly higher PC1 scores reflecting flatter phalanges. African ape (gorillas, chimpanzees and bonobos) phalanges fell between these two extremes and were not significantly different from each other. PC1 scores were significantly correlated with both included angle and the a coefficient of a second-degree polynomial calculated from the same landmark dataset, but had a significantly higher correlation with included angles. Our alternative approach for quantifying diaphysis shape of proximal phalanges to investigate dorsopalmar curvature is replicable and does not assume a priori either a circle or parabola model of shape, making it an attractive alternative compared with existing methodologies.


Assuntos
Atelinae , Falanges dos Dedos da Mão , Hominidae , Animais , Diáfises/diagnóstico por imagem , Falanges dos Dedos da Mão/diagnóstico por imagem , Gorilla gorilla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA