Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2314213121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805282

RESUMO

The anterolateral system (ALS) is a major ascending pathway from the spinal cord that projects to multiple brain areas and underlies the perception of pain, itch, and skin temperature. Despite its importance, our understanding of this system has been hampered by the considerable functional and molecular diversity of its constituent cells. Here, we use fluorescence-activated cell sorting to isolate ALS neurons belonging to the Phox2a-lineage for single-nucleus RNA sequencing. We reveal five distinct clusters of ALS neurons (ALS1-5) and document their laminar distribution in the spinal cord using in situ hybridization. We identify three clusters of neurons located predominantly in laminae I-III of the dorsal horn (ALS1-3) and two clusters with cell bodies located in deeper laminae (ALS4 and ALS5). Our findings reveal the transcriptional logic that underlies ALS neuronal diversity in the adult mouse and uncover the molecular identity of two previously identified classes of projection neurons. We also show that these molecular signatures can be used to target groups of ALS neurons using retrograde viral tracing. Overall, our findings provide a valuable resource for studying somatosensory biology and targeting subclasses of ALS neurons.


Assuntos
Proteínas de Homeodomínio , Animais , Camundongos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Neurônios/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Núcleo Celular/metabolismo , Núcleo Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Neurosci ; 41(44): 9141-9162, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34544832

RESUMO

The potassium channel Kv1.6 has recently been implicated as a major modulatory channel subunit expressed in primary nociceptors. Furthermore, its expression at juxtaparanodes of myelinated primary afferents is induced following traumatic nerve injury as part of an endogenous mechanism to reduce hyperexcitability and pain-related hypersensitivity. In this study, we compared two mouse models of constitutive Kv1.6 knock-out (KO) achieved by different methods: traditional gene trap via homologous recombination and CRISPR-mediated excision. Both Kv1.6 KO mouse lines exhibited an unexpected reduction in sensitivity to noxious heat stimuli, to differing extents: the Kv1.6 mice produced via gene trap had a far more significant hyposensitivity. These mice (Kcna6lacZ ) expressed the bacterial reporter enzyme LacZ in place of Kv1.6 as a result of the gene trap mechanism, and we found that their central primary afferent presynaptic terminals developed a striking neurodegenerative phenotype involving accumulation of lipid species, development of "meganeurites," and impaired transmission to dorsal horn wide dynamic range neurons. The anatomic defects were absent in CRISPR-mediated Kv1.6 KO mice (Kcna6-/-) but were present in a third mouse model expressing exogenous LacZ in nociceptors under the control of a Nav1.8-promoted Cre recombinase. LacZ reporter enzymes are thus intrinsically neurotoxic to sensory neurons and may induce pathologic defects in transgenic mice, which has confounding implications for the interpretation of gene KOs using lacZ Nonetheless, in Kcna6-/- mice not affected by LacZ, we demonstrated a significant role for Kv1.6 regulating acute noxious thermal sensitivity, and both mechanical and thermal pain-related hypersensitivity after nerve injury.SIGNIFICANCE STATEMENT In recent decades, the expansion of technologies to experimentally manipulate the rodent genome has contributed significantly to the field of neuroscience. While introduction of enzymatic or fluorescent reporter proteins to label neuronal populations is now commonplace, often potential toxicity effects are not fully considered. We show a role of Kv1.6 in acute and neuropathic pain states through analysis of two mouse models lacking Kv1.6 potassium channels: one with additional expression of LacZ and one without. We show that LacZ reporter enzymes induce unintended defects in sensory neurons, with an impact on behavioral data outcomes. To summarize we highlight the importance of Kv1.6 in recovery of normal sensory function following nerve injury, and careful interpretation of data from LacZ reporter models.


Assuntos
Técnicas de Inativação de Genes/efeitos adversos , Genes Reporter , Canal de Potássio Kv1.6/genética , Óperon Lac , Neuralgia/metabolismo , Nociceptores/metabolismo , Animais , Sistemas CRISPR-Cas , Feminino , Técnicas de Inativação de Genes/métodos , Integrases/metabolismo , Canal de Potássio Kv1.6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/patologia , Sinapses/metabolismo , Sinapses/patologia
3.
Mol Pain ; 18: 17448069221119614, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-36000342

RESUMO

Projection neurons belonging to the anterolateral system (ALS) underlie the perception of pain, skin temperature and itch. Many ALS cells are located in laminae III-V of the dorsal horn and the adjacent lateral white matter. However, relatively little is known about the excitatory synaptic input to these deep ALS cells, and therefore about their engagement with the neuronal circuitry of the region. We have used a recently developed mouse line, Phox2a::Cre, to investigate a population of deep dorsal horn ALS neurons known as "antenna cells", which are characterised by dense innervation from peptidergic nociceptors, and to compare these with other ALS cells in the deep dorsal horn and lateral white matter. We show that these two classes differ, both in the density of excitatory synapses, and in the source of input at these synapses. Peptidergic nociceptors account for around two-thirds of the excitatory synapses on the antenna cells, but for only a small proportion of the input to the non-antenna cells. Conversely, boutons with high levels of VGLUT2, which are likely to originate mainly from glutamatergic spinal neurons, account for only ∼5% of the excitatory synapses on antenna cells, but for a much larger proportion of the input to the non-antenna cells. VGLUT1 is expressed by myelinated low-threshold mechanoreceptors and corticospinal axons, and these innervate both antenna and non-antenna cells. However, the density of VGLUT1 input to the non-antenna cells is highly variable, consistent with the view that these neurons are functionally heterogeneous.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Proteínas de Homeodomínio/genética , Integrases , Camundongos , Neurônios/fisiologia , Células do Corno Posterior/fisiologia , Medula Espinal , Corno Dorsal da Medula Espinal
4.
J Neural Transm (Vienna) ; 127(4): 505-525, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32239353

RESUMO

The dorsal horns of the spinal cord and the trigeminal nuclei in the brainstem contain neuron populations that are critical to process sensory information. Neurons in these areas are highly heterogeneous in their morphology, molecular phenotype and intrinsic properties, making it difficult to identify functionally distinct cell populations, and to determine how these are engaged in pathophysiological conditions. There is a growing consensus concerning the classification of neuron populations, based on transcriptomic and transductomic analyses of the dorsal horn. These approaches have led to the discovery of several molecularly defined cell types that have been implicated in cutaneous mechanical allodynia, a highly prevalent and difficult-to-treat symptom of chronic pain, in which touch becomes painful. The main objective of this review is to provide a contemporary view of dorsal horn neuronal populations, and describe recent advances in our understanding of on how they participate in cutaneous mechanical allodynia.


Assuntos
Dor Crônica , Hiperalgesia , Inflamação , Neuralgia , Células do Corno Posterior , Animais , Dor Crônica/imunologia , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Hiperalgesia/imunologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Neuralgia/imunologia , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Células do Corno Posterior/classificação , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo
5.
Mol Pain ; 13: 1744806917693003, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28326935

RESUMO

The spinal dorsal horn receives input from primary afferent axons, which terminate in a modality-specific fashion in different laminae. The incoming somatosensory information is processed through complex synaptic circuits involving excitatory and inhibitory interneurons, before being transmitted to the brain via projection neurons for conscious perception. The dorsal horn is important, firstly because changes in this region contribute to chronic pain states, and secondly because it contains potential targets for the development of new treatments for pain. However, at present, we have only a limited understanding of the neuronal circuitry within this region, and this is largely because of the difficulty in defining functional populations among the excitatory and inhibitory interneurons. The recent discovery of specific neurochemically defined interneuron populations, together with the development of molecular genetic techniques for altering neuronal function in vivo, are resulting in a dramatic improvement in our understanding of somatosensory processing at the spinal level.


Assuntos
Vias Aferentes/fisiologia , Interneurônios/fisiologia , Corno Dorsal da Medula Espinal/citologia , Medula Espinal/anatomia & histologia , Animais , Interneurônios/classificação , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo
6.
J Neurosci ; 35(19): 7626-42, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25972186

RESUMO

The superficial dorsal horn of the spinal cord contains numerous inhibitory interneurons, which regulate the transmission of information perceived as touch, pain, or itch. Despite the importance of these cells, our understanding of their roles in the neuronal circuitry is limited by the difficulty in identifying functional populations. One group that has been identified and characterized consists of cells in the mouse that express green fluorescent protein (GFP) under control of the prion protein (PrP) promoter. Previous reports suggested that PrP-GFP cells belonged to a single morphological class (central cells), received inputs exclusively from unmyelinated primary afferents, and had axons that remained in lamina II. However, we recently reported that the PrP-GFP cells expressed neuronal nitric oxide synthase (nNOS) and/or galanin, and it has been shown that nNOS-expressing cells are more diverse in their morphology and synaptic connections. We therefore used a combined electrophysiological, pharmacological, and anatomical approach to reexamine the PrP-GFP cells. We provide evidence that they are morphologically diverse (corresponding to "unclassified" cells) and receive synaptic input from a variety of primary afferents, with convergence onto individual cells. We also show that their axons project into adjacent laminae and that they target putative projection neurons in lamina I. This indicates that the neuronal circuitry involving PrP-GFP cells is more complex than previously recognized, and suggests that they are likely to have several distinct roles in regulating the flow of somatosensory information through the dorsal horn.


Assuntos
Vias Aferentes/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Interneurônios/metabolismo , Príons/metabolismo , Medula Espinal/citologia , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Capsaicina/farmacologia , Feminino , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Príons/genética , Receptores da Neurocinina-1/metabolismo , Fármacos do Sistema Sensorial/farmacologia
7.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27030714

RESUMO

BACKGROUND: Excitatory interneurons account for the majority of neurons in laminae I-III, but their functions are poorly understood. Several neurochemical markers are largely restricted to excitatory interneuron populations, but we have limited knowledge about the size of these populations or their overlap. The present study was designed to investigate this issue by quantifying the neuronal populations that express somatostatin (SST), neurokinin B (NKB), neurotensin, gastrin-releasing peptide (GRP) and the γ isoform of protein kinase C (PKCγ), and assessing the extent to which they overlapped. Since it has been reported that calretinin- and SST-expressing cells have different functions, we also looked for co-localisation of calretinin and SST. RESULTS: SST, preprotachykinin B (PPTB, the precursor of NKB), neurotensin, PKCγ or calretinin were detected with antibodies, while cells expressing GRP were identified in a mouse line (GRP-EGFP) in which enhanced green fluorescent protein (EGFP) was expressed under control of the GRP promoter. We found that SST-, neurotensin-, PPTB- and PKCγ-expressing cells accounted for 44%, 7%, 12% and 21% of the neurons in laminae I-II, and 16%, 8%, 4% and 14% of those in lamina III, respectively. GRP-EGFP cells made up 11% of the neuronal population in laminae I-II. The neurotensin, PPTB and GRP-EGFP populations showed very limited overlap, and we estimate that between them they account for ~40% of the excitatory interneurons in laminae I-II. SST which is expressed by ~60% of excitatory interneurons in this region, was found in each of these populations, as well as in cells that did not express any of the other peptides. Neurotensin and PPTB were often found in cells with PKCγ, and between them, constituted around 60% of the PKCγ cells. Surprisingly, we found extensive co-localisation of SST and calretinin. CONCLUSIONS: These results suggest that cells expressing neurotensin, NKB or GRP form largely non-overlapping sets that are likely to correspond to functional populations. In contrast, SST is widely expressed by excitatory interneurons that are likely to be functionally heterogeneous.


Assuntos
Interneurônios/química , Neuropeptídeos/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Calbindina 2/metabolismo , Peptídeo Liberador de Gastrina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neurotensina/metabolismo , Proteína Quinase C/metabolismo , Precursores de Proteínas/metabolismo , Somatostatina/metabolismo , Taquicininas/metabolismo
8.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27270268

RESUMO

BACKGROUND: Gastrin-releasing peptide (GRP) is thought to play a role in the itch evoked by intradermal injection of chloroquine. Although some early studies suggested that GRP was expressed in pruriceptive primary afferents, it is now thought that GRP in the spinal cord is derived mainly from a population of excitatory interneurons in lamina II, and it has been suggested that these are involved in the itch pathway. To test this hypothesis, we used the transcription factor Fos and phosphorylation of extracellular signal-regulated kinases (ERK) to look for evidence that interneurons expressing GRP were activated following intradermal injection of chloroquine into the calf, in mice that express enhanced green fluorescent protein (EGFP) in these cells. RESULTS: Injection of chloroquine resulted in numerous Fos- or phospho-ERK (pERK) positive cells in the somatotopically appropriate part of the superficial dorsal horn. The proportion of all neurons in this region that showed Fos or pERK was 18% and 21%, respectively. However, among the GRP-EGFP, only 7% were Fos-positive and 3% were pERK-positive. As such, GRP-EGFP cells were significantly less likely than other neurons to express Fos or to phosphorylate ERK. CONCLUSIONS: Both expression of Fos and phosphorylation of ERK can be used to identify dorsal horn neurons activated by chloroquine injection. However, these results do not support the hypothesis that interneurons expressing GRP are critical components in the itch pathway.


Assuntos
Cloroquina/administração & dosagem , Cloroquina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gânglios Espinais/citologia , Peptídeo Liberador de Gastrina/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Proteínas de Fluorescência Verde/metabolismo , Injeções Intradérmicas , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Razão de Chances , Fosforilação/efeitos dos fármacos , Células do Corno Posterior/metabolismo
10.
J Neurosci ; 34(38): 12919-32, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232126

RESUMO

Although Renshaw cells (RCs) were discovered over half a century ago, their precise role in recurrent inhibition and ability to modulate motoneuron excitability have yet to be established. Indirect measurements of recurrent inhibition have suggested only a weak modulatory effect but are limited by the lack of observed motoneuron responses to inputs from single RCs. Here we present dual recordings between connected RC-motoneuron pairs, performed on mouse spinal cord. Motoneuron responses demonstrated that Renshaw synapses elicit large inhibitory conductances and show short-term potentiation. Anatomical reconstruction, combined with a novel method of quantal analysis, showed that the strong inhibitory input from RCs results from the large number of synaptic contacts that they make onto individual motoneurons. We used the NEURON simulation environment to construct realistic electrotonic models, which showed that inhibitory conductances from Renshaw inputs exert considerable shunting effects in motoneurons and reduce the frequency of spikes generated by excitatory inputs. This was confirmed experimentally by showing that excitation of a single RC or selective activation of the recurrent inhibitory pathway to generate equivalent inhibitory conductances both suppress motoneuron firing. We conclude that recurrent inhibition is remarkably effective, in that a single action potential from one RC is sufficient to silence a motoneuron. Although our results may differ from previous indirect observations, they underline a need for a reevaluation of the role that RCs perform in one of the first neuronal circuits to be discovered.


Assuntos
Interneurônios/fisiologia , Neurônios Motores/fisiologia , Inibição Neural/fisiologia , Potenciais de Ação/fisiologia , Animais , Feminino , Interneurônios/citologia , Masculino , Camundongos , Modelos Neurológicos , Medula Espinal/citologia , Medula Espinal/fisiologia
11.
Nat Rev Neurosci ; 11(12): 823-36, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21068766

RESUMO

Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region.


Assuntos
Rede Nervosa/fisiopatologia , Nociceptores/fisiologia , Dor/patologia , Células do Corno Posterior/fisiopatologia , Vias Aferentes/patologia , Vias Aferentes/fisiopatologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Humanos , Rede Nervosa/patologia
12.
PLoS Biol ; 10(3): e1001283, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427743

RESUMO

Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Potenciação de Longa Duração , Nociceptores/metabolismo , Dor/patologia , Aminoquinolinas/farmacologia , Animais , Comportamento Animal , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I , Proteínas Quinases Dependentes de GMP Cíclico/genética , Ativação Enzimática , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Deleção de Genes , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Nociceptores/efeitos dos fármacos , Nociceptores/patologia , Dor/metabolismo , Técnicas de Patch-Clamp , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais , Especificidade por Substrato , Transmissão Sináptica
13.
Handb Exp Pharmacol ; 227: 171-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25846619

RESUMO

Inhibitory interneurons, which use GABA and/or glycine as their principal transmitter, have numerous roles in regulating the transmission of sensory information through the spinal dorsal horn. These roles are likely to be performed by different populations of interneurons, each with specific locations in the synaptic circuitry of the region. Peripheral nerve injury frequently leads to neuropathic pain, and it is thought that loss of function of inhibitory interneurons in the dorsal horn contributes to this condition. Several mechanisms have been proposed for this disinhibition, including death of inhibitory interneurons, decreased transmitter release, diminished activity of these cells and reduced effectiveness of GABA and glycine as inhibitory transmitters. However, despite numerous studies on this important topic, it is still not clear which (if any) of these mechanisms contributes to neuropathic pain after nerve injury.


Assuntos
Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Dor/fisiopatologia , Medula Espinal/fisiologia , Animais , Humanos , Interneurônios/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Transmissão Sináptica , Ácido gama-Aminobutírico/fisiologia
14.
Mol Pain ; 10: 79, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25496164

RESUMO

BACKGROUND: Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. RESULTS: GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. CONCLUSIONS: These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.


Assuntos
Peptídeo Liberador de Gastrina/metabolismo , Interneurônios/metabolismo , Corno Dorsal da Medula Espinal/citologia , Animais , Axônios/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurocinina A/metabolismo , Neurônios Aferentes/metabolismo , Regiões Promotoras Genéticas , Somatostatina/metabolismo , Substância P/metabolismo
15.
Mol Pain ; 10: 3, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24433581

RESUMO

BACKGROUND: Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. RESULTS: We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin. CONCLUSIONS: These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia.


Assuntos
Mecanotransdução Celular , Modelos Neurológicos , Células do Corno Posterior/metabolismo , Animais , Toxina da Cólera/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Bainha de Mielina/metabolismo , Células do Corno Posterior/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Wistar , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
16.
J Neurosci ; 32(34): 11854-63, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22915126

RESUMO

Large projection neurons in lamina III of the rat spinal cord that express the neurokinin 1 receptor are densely innervated by peptidergic primary afferent nociceptors and more sparsely by low-threshold myelinated afferents. However, we know little about their input from other glutamatergic neurons. Here we show that these cells receive numerous contacts from nonprimary boutons that express the vesicular glutamate transporter 2 (VGLUT2), and form asymmetrical synapses on their dendrites and cell bodies. These synapses are significantly smaller than those formed by peptidergic afferents, but provide a substantial proportion of the glutamatergic synapses that the cells receive (over a third of those in laminae I-II and half of those in deeper laminae). Surprisingly, although the dynorphin precursor preprodynorphin (PPD) was only present in 4-7% of VGLUT2 boutons in laminae I-IV, it was found in 58% of the VGLUT2 boutons that contacted these cells. This indicates a highly selective targeting of the lamina III projection cells by glutamatergic neurons that express PPD, and these are likely to correspond to local neurons (interneurons and possibly projection cells). Since many PPD-expressing dorsal horn neurons respond to noxious stimulation, this suggests that the lamina III projection cells receive powerful monosynaptic and polysynaptic nociceptive input. Excitatory interneurons in the dorsal horn have been shown to possess I(A) currents, which limit their excitability and can underlie a form of activity-dependent intrinsic plasticity. It is therefore likely that polysynaptic inputs to the lamina III projection neurons are recruited during the development of chronic pain states.


Assuntos
Dinorfinas/metabolismo , Rede Nervosa/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Medula Espinal/citologia , Análise de Variância , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Neurônios/classificação , Neurônios/citologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Precursores de Proteínas/metabolismo , Ratos , Ratos Wistar , Receptores da Neurocinina-1/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
17.
Mol Pain ; 9: 56, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24176114

RESUMO

BACKGROUND: Inhibitory interneurons in the superficial dorsal horn play important roles in modulating sensory transmission, and these roles are thought to be performed by distinct functional populations. We have identified 4 non-overlapping classes among the inhibitory interneurons in the rat, defined by the presence of galanin, neuropeptide Y, neuronal nitric oxide synthase (nNOS) and parvalbumin. The somatostatin receptor sst2A is expressed by ~50% of the inhibitory interneurons in this region, and is particularly associated with nNOS- and galanin-expressing cells. The main aim of the present study was to test whether a genetically-defined population of inhibitory interneurons, those expressing green fluorescent protein (GFP) in the PrP-GFP mouse, belonged to one or more of the neurochemical classes identified in the rat. RESULTS: The expression of sst2A and its relation to other neurochemical markers in the mouse was similar to that in the rat, except that a significant number of cells co-expressed nNOS and galanin. The PrP-GFP cells were entirely contained within the set of inhibitory interneurons that possessed sst2A receptors, and virtually all expressed nNOS and/or galanin. GFP was present in ~3-4% of neurons in the superficial dorsal horn, corresponding to ~16% of the inhibitory interneurons in this region. Consistent with their sst2A-immunoreactivity, all of the GFP cells were hyperpolarised by somatostatin, and this was prevented by administration of a selective sst2 receptor antagonist or a blocker of G-protein-coupled inwardly rectifying K+ channels. CONCLUSIONS: These findings support the view that neurochemistry provides a valuable way of classifying inhibitory interneurons in the superficial laminae. Together with previous evidence that the PrP-GFP cells form a relatively homogeneous population in terms of their physiological properties, they suggest that these neurons have specific roles in processing sensory information in the dorsal horn.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Interneurônios/metabolismo , Células do Corno Posterior/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos
18.
Neuroscience ; 510: 60-71, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581131

RESUMO

Gastrin-releasing peptide (GRP) in the spinal dorsal horn acts on the GRP receptor, and this signalling mechanism has been strongly implicated in itch. However, the source of GRP in the dorsal horn is not fully understood. For example, the BAC transgenic mouse line GRP::GFP only captures around 25% of GRP-expressing cells, and Grp mRNA is found in several types of excitatory interneuron. A major limitation in attempts to identify GRP-expressing neurons has been that antibodies against GRP cross-react with other neuropeptides, including some that are expressed by primary afferents. Here we have developed two antibodies raised against different parts of the precursor protein, pro-GRP. We show that labelling is specific, and that the antibodies do not cross-react with neuropeptides in primary afferents. Immunoreactivity was strongest in the superficial laminae, and the two antibodies labelled identical structures, including glutamatergic axons and cell bodies. The pattern of pro-GRP-immunoreactivity varied among different neurochemical classes of excitatory interneuron. Cell bodies and axons of all GRP-GFP cells were labelled, confirming reliability of the antibodies. Among the other populations, we found the highest degree of co-expression (>50%) in axons of NPFF-expressing cells, while this was somewhat lower (10-20%) in cells that expressed substance P and NKB, and much lower (<10%) in other classes. Our findings show that these antibodies reliably detect GRP-expressing neurons and axons, and that in addition to the GRP-GFP cells, excitatory interneurons expressing NPFF or substance P are likely to be the main source of GRP in the spinal dorsal horn.


Assuntos
Neuropeptídeos , Substância P , Animais , Camundongos , Peptídeo Liberador de Gastrina/metabolismo , Camundongos Transgênicos , Neuropeptídeos/metabolismo , Células do Corno Posterior/metabolismo , Reprodutibilidade dos Testes , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Substância P/metabolismo
19.
Sci Rep ; 13(1): 5891, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041197

RESUMO

Excitatory interneurons in the superficial dorsal horn (SDH) are heterogeneous, and include a class known as vertical cells, which convey information to lamina I projection neurons. We recently used pro-NPFF antibody to reveal a discrete population of excitatory interneurons that express neuropeptide FF (NPFF). Here, we generated a new mouse line (NPFFCre) in which Cre is knocked into the Npff locus, and used Cre-dependent viruses and reporter mice to characterise NPFF cell properties. Both viral and reporter strategies labelled many cells in the SDH, and captured most pro-NPFF-immunoreactive neurons (75-80%). However, the majority of labelled cells lacked pro-NPFF, and we found considerable overlap with a population of neurons that express the gastrin-releasing peptide receptor (GRPR). Morphological reconstruction revealed that most pro-NPFF-containing neurons were vertical cells, but these differed from GRPR neurons (which are also vertical cells) in having a far higher dendritic spine density. Electrophysiological recording showed that NPFF cells also differed from GRPR cells in having a higher frequency of miniature EPSCs, being more electrically excitable and responding to a NPY Y1 receptor agonist. Together, these findings indicate that there are at least two distinct classes of vertical cells, which may have differing roles in somatosensory processing.


Assuntos
Neurônios , Corno Dorsal da Medula Espinal , Camundongos , Animais , Oligopeptídeos , Interneurônios , Receptores da Bombesina
20.
Front Mol Neurosci ; 16: 1294994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143564

RESUMO

The superficial dorsal horn (SDH) of the spinal cord contains a diverse array of neurons. The vast majority of these are interneurons, most of which are glutamatergic. These can be assigned to several populations, one of which is defined by expression of gastrin-releasing peptide receptor (GRPR). The GRPR cells are thought to be "tertiary pruritoceptors," conveying itch information to lamina I projection neurons of the anterolateral system (ALS). Surprisingly, we recently found that GRPR-expressing neurons belong to a morphological class known as vertical cells, which are believed to transmit nociceptive information to lamina I ALS cells. Little is currently known about synaptic circuits engaged by the GRPR cells. Here we combine viral-mediated expression of PSD95-tagRFP fusion protein with super-resolution microscopy to reveal sources of excitatory input to GRPR cells. We find that they receive a relatively sparse input from peptidergic and non-peptidergic nociceptors in SDH, and a limited input from A- and C-low threshold mechanoreceptors on their ventral dendrites. They receive synapses from several excitatory interneuron populations, including those defined by expression of substance P, neuropeptide FF, cholecystokinin, neurokinin B, and neurotensin. We investigated downstream targets of GRPR cells by chemogenetically exciting them and identifying Fos-positive (activated) cells. In addition to lamina I projection neurons, many ALS cells in lateral lamina V and the lateral spinal nucleus were Fos-positive, suggesting that GRPR-expressing cells target a broader population of projection neurons than was previously recognised. Our findings indicate that GRPR cells receive a diverse synaptic input from various types of primary afferent and excitatory interneuron, and that they can activate ALS cells in both superficial and deep regions of the dorsal horn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA