Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 37(12): 3331-3341, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28258169

RESUMO

Significant migration cues are required to guide and contain newly generated rodent subventricular zone (SVZ) neuroblasts as they transit along the lateral ventricles and then through the anterior forebrain to their ultimate site of differentiation in the olfactory bulbs (OBs). These cues enforce strict neuroblast spatial boundaries within the dense astroglial meshwork of the SVZ and rostral migratory stream (RMS), yet are permissive to large-scale neuroblast migration. Therefore, the molecular mechanisms that define these cues and control dynamic interactions between migratory neuroblasts and surrounding astrocytes are of particular interest. We found that deletion of EphA4 and specifically ablation of EphA4 kinase activity resulted in misaligned neuroblasts and disorganized astrocytes in the RMS/SVZ, linking EphA4 forward signaling to SVZ and RMS spatial organization, orientation, and regulation. In addition, within a 3 week period, there was a significant reduction in the number of neuroblasts that reached the OB and integrated into the periglomerular layer, revealing a crucial role for EphA4 in facilitating efficient neuroblast migration to the OB. Single-cell analysis revealed that EPHA4 and its EFN binding partners are expressed by subpopulations of neuroblasts and astrocytes within the SVZ/RMS/OB system resulting in a cell-specific mosaic, suggesting complex EphA4 signaling involving both homotypic and heterotypic cell-cell interactions. Together, our studies reveal a novel molecular mechanism involving EphA4 signaling that functions in stem cell niche organization and ultimately neuroblast migration in the anterior forebrain.SIGNIFICANCE STATEMENT The subventricular zone neurogenic stem cell niche generates highly migratory neuroblasts that transit the anterior forebrain along a defined pathway to the olfactory bulb. Postnatal and adult brain organization dictates strict adherence to a narrow migration corridor. Subventricular zone neuroblasts are aligned in tightly bundled chains within a meshwork of astrocytes; however, the cell-cell cues that organize this unique, cell-dense migration pathway are largely unknown. Our studies show that forward signaling through the EphA4 tyrosine kinase receptor, mediated by ephrins expressed by subpopulations of neuroblasts and astrocytes, is required for compact, directional organization of neuroblasts and astrocytes within the pathway and efficient transit of neuroblasts through the anterior forebrain to the olfactory bulb.


Assuntos
Astrócitos/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Prosencéfalo/fisiologia , Receptor EphA4/metabolismo , Nicho de Células-Tronco/fisiologia , Animais , Astrócitos/citologia , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Prosencéfalo/citologia
2.
Exp Gerontol ; 94: 9-13, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27867091

RESUMO

In the anterior forebrain, along the lateral wall of the lateral ventricles, a neurogenic stem cell niche is found in a region referred to as the ventricular-subventricular zone (V-SVZ). In rodents, robust V-SVZ neurogenesis provides new neurons to the olfactory bulb throughout adulthood; however, with increasing age stem cell numbers are reduced and neurogenic capacity is significantly diminished, but new olfactory bulb neurons continue to be produced even in old age. Humans, in contrast, show little to no new neurogenesis after two years of age and whether V-SVZ neural stem cells persist in the adult human brain remains unclear. Here, we review functional and organizational differences in the V-SVZ stem cell niche of mice and humans, and examine how aging affects the V-SVZ niche and its associated functions.


Assuntos
Ventrículos Laterais , Células-Tronco Neurais , Neurogênese , Bulbo Olfatório , Prosencéfalo , Nicho de Células-Tronco , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Movimento Celular , Proliferação de Células , Humanos , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Ventrículos Laterais/fisiopatologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Bulbo Olfatório/fisiopatologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Prosencéfalo/fisiopatologia , Especificidade da Espécie
3.
Front Aging Neurosci ; 9: 445, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379433

RESUMO

Ventriculomegaly (expansion of the brain's fluid-filled ventricles), a condition commonly found in the aging brain, results in areas of gliosis where the ependymal cells are replaced with dense astrocytic patches. Loss of ependymal cells would compromise trans-ependymal bulk flow mechanisms required for clearance of proteins and metabolites from the brain parenchyma. However, little is known about the interplay between age-related ventricle expansion, the decline in ependymal integrity, altered periventricular fluid homeostasis, abnormal protein accumulation and cognitive impairment. In collaboration with the Baltimore Longitudinal Study of Aging (BLSA) and Alzheimer's Disease Neuroimaging Initiative (ADNI), we analyzed longitudinal structural magnetic resonance imaging (MRI) and subject-matched fluid-attenuated inversion recovery (FLAIR) MRI and periventricular biospecimens to map spatiotemporally the progression of ventricle expansion and associated periventricular edema and loss of transependymal exchange functions in healthy aging individuals and those with varying degrees of cognitive impairment. We found that the trajectory of ventricle expansion and periventricular edema progression correlated with degree of cognitive impairment in both speed and severity, and confirmed that areas of expansion showed ventricle surface gliosis accompanied by edema and periventricular accumulation of protein aggregates, suggesting impaired clearance mechanisms in these regions. These findings reveal pathophysiological outcomes associated with normal brain aging and cognitive impairment, and indicate that a multifactorial analysis is best suited to predict and monitor cognitive decline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA