Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 5(3): 1669-1678, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32010841

RESUMO

Ethane ammoxidation to acetonitrile and ethylene over the Co/HZSM-5 catalysts was revisited based on both transient and steady-state performance evaluation to elucidate the structure/reactivity relationships. We suggested that the exchanged Co2+ cation encapsulated in the zeolite favors the formation of acetonitrile and ethylene, whereas nanosized cobalt oxide particles without close proximity with the HZSM-5 only favor CO2 formation. Excess Brønsted acid sites of the zeolites may act as a reservoir for NH3, which inhibits the CO2 formation through the NH3-mediated oxidative dehydrogenation mechanism. According to the transient kinetic analysis, the time constants τ from the back-transient decay for NH3 and CO2 are both 7.7 min, which decreased to 2.7 min for acetonitrile and further decreased to 3-4 s for ethane, ethylene, and O2. Assuming first-order reaction kinetics, the rate constants for the formation of acetonitrile and CO2 are 0.37 and 0.13 min-1, respectively, from their corresponding reactive intermediates.

2.
ACS Appl Mater Interfaces ; 10(5): 4776-4785, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29328617

RESUMO

A novel gold-copper-based silica-encapsulated mixed metal oxide (MMO) core-shell catalyst-with sub-5 nm MMO particles-was successfully synthesized via a reverse micelle process. The SiO2-encapsulated MMO catalyst was reduced under hydrogen flow to produce an Au-Cu@SiO2 catalyst. X-ray diffraction and X-ray photoelectron spectroscopy characterization confirmed the presence of Au-Cu nanocomposites in the catalyst, while transmission electron microscopy characterization revealed the core-shell structure of the catalyst with the presence of sub-5 nm Au-Cu nanoparticle cores inside SiO2 shells. Brunauer-Emmett-Teller surface characterization identified that the catalyst is porous and bimodal in nature. The effects of promoter metal ion, catalyst pretreatment (calcination), and the presence of CO2 in the feed stream on carbon monoxide (CO) oxidation over the Au-Cu@SiO2 catalyst were examined in the temperature range of 50-400 °C. A catalyst stability test was performed at 300 °C by conducting a CO oxidation reaction for 116 h on stream. The catalyst exhibited excellent efficacy for CO oxidation, with ∼100% conversion to CO2 achieved at 400 °C. While the presence of Cu enhanced the CO conversion at low to intermediate temperatures (50-300 °C), silica encapsulation of the Au-Cu nanocomposites facilitated remarkable stability of the catalyst. The activity of the Au-Cu@SiO2 catalyst is suitable for its application in automotive after-treatment devices, especially in low-temperature combustion engine exhausts.

3.
Polymers (Basel) ; 10(2)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30966219

RESUMO

We report the preparation of carbon-based nanomaterials from biopolymer kraft lignin via an iron catalytic thermal treatment process. Both the carbonaceous gases and amorphous carbon (AC) from lignin thermal decomposition were found to have participated in the formation of graphitic-carbon-encapsulated iron nanoparticles (GCEINs). GCEINs originating from carbonaceous gases have thick-walled graphitic-carbon layers (10 to 50) and form at a temperature of 700 °C. By contrast, GCEINs from AC usually have thin-walled graphitic-carbon layers (1 to 3) and form at a temperature of at least 800 °C. Iron catalyst nanoparticles started their phase transition from α-Fe to γ-Fe at 700 °C, and then from γ-Fe to Fe3C at 1000 °C. Furthermore, we derived a formula to calculate the maximum number of graphitic-carbon layers formed on iron nanoparticles via the AC dissolution-precipitation mechanism.

4.
ACS Omega ; 2(12): 8877-8887, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457416

RESUMO

Rheological characteristics of a concentrated suspension can be tuned using anisotropic particles having various shapes and sizes. Here, the role of anisotropic nanoparticles, such as surface-functionalized multiwall carbon nanotubes (MWNTs) and graphene oxide nanoplatelets (GONPs), on the rheological behavior of fumed silica suspensions in poly(ethylene glycol) (PEG) is investigated. In these mixed-particle suspensions, the concentrations of MWNTs and GONPs are much lower than the fumed silica concentration. The suspensions are stable, and hydrogen-bonded PEG solvation layers around the particles inhibit their flocculation. Fumed silica suspensions over the concentration range considered here display shear-thickening behavior. However, for a larger concentration of MWNTs and with increasing aspect ratios, the shear-thickening behavior diminishes. In contrast, a distinct shear-thickening response has been observed for the GONP-containing suspensions for similar mass fractions (MFs) of MWNTs. For these suspensions, shear thickening is achieved at a lower solid MFs compared to the suspensions consisting of only fumed silica. A significant weight reduction of shear-thickening fluids that can be achieved by this approach is beneficial for many applications. Our results provide guiding principles for controlling the rheological behavior of mixed-particle systems relevant in many fields.

5.
ACS Appl Mater Interfaces ; 7(33): 18650-61, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26237541

RESUMO

Shear-thickening fluids (STFs) can be subjected to a significant temperature variation in many applications. Polymeric or oligomeric fluids are commonly used as suspending media for STFs. Because the viscosities of polymeric fluids are strongly temperature-dependent, large temperature changes can profoundly affect the shear-thickening responses. Here, the effect of temperature on the shear-thickening behavior of four low-molecular-weight polymeric glycols/fumed silica suspensions is reported. The dispersed-phase volume fraction, its surface chemistry, and the chemical compositions of the suspending media were varied. These factors influence the viscosity and the interactions between the suspended particles and the suspending media. Fumed silica particles with two different silanol-group surface densities were suspended in the polymeric glycols, where these silanol surface groups formed hydrogen bonds with the suspending media's glycols and internal oxygen atoms. Steady-shear experiments were performed over a temperature range spanning approximately 100 °C. The critical shear rate for the onset of shear thickening decreased with decreasing temperature. The critical shear rates were inversely proportional to the viscosity of the pure suspending media over these same temperature ranges. The response of STFs to varying both the temperature and shear rate investigated here will help to design application-specific STFs. Mitigation of a hypervelocity (6.81 km/s) impact on an aluminum facesheet sandwich composite filled with one of these STFs was demonstrated.

6.
J Colloid Interface Sci ; 270(1): 123-6, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14693143

RESUMO

Amorphous MoS(3) (air-dried precipitate), crystalline MoS(2) (made in the laboratory under nitrogenous atmosphere), and commercial molybdenum disulfide catalysts have been investigated by X-ray photoelectron spectroscopy (XPS). The chemical species present on the surface and the S/Mo atomic ratios of laboratory catalysts were compared to those present on a commercial molybdenum disulfide catalyst before and after treatment with CO and H(2). Pretreatment of MoS(2) with CO followed by H(2) showed that CO was adsorbed on the surface with no change in the chemical oxidation state of Mo and S. However, the results indicated that CO was not adsorbed when the sequence of gas exposures was reversed.

7.
Talanta ; 77(3): 953-61, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19064075

RESUMO

SnO(2) nanocrystalline material was prepared with a sol-gel process and thin films of the nanocrystalline SnO(2) were coated on the surface of bent optical fiber cores for gas sensing. The UV/vis absorption spectrometry of the porous SnO(2) coating on the surface of the bent optical fiber core exposed to reducing gases was investigated with a fiber optical spectrometric method. The SnO(2) film causes optical absorption signal in UV region with peak absorption wavelength at around 320 nm when contacting H(2)-N(2) samples at high temperatures. This SnO(2) thin film does not respond to other reducing gases, such as CO, CH(4) and other hydrocarbons, at high temperatures within the tested temperature range from 300 degrees C to 800 degrees C. The response of the sensing probe is fast (within seconds). Replenishing of the oxygen in tin oxide was demonstrated by switching the gas flow from H(2)-N(2) mixture to pure nitrogen and compressed air. It takes about 20 min for the absorption signal to decrease to the baseline after the gas sample was switched to pure nitrogen, while the absorption signal decreased quickly (in 5 min) to the baseline after switching to compressed air. The adhesion of tin oxide thin films is found to be improved by pre-coating a thin layer of silica gel on the optical fiber. Adhesion increases due to increase interaction of optical fiber surface and the coated silica gel and tin oxide film. Optical absorption spectra of SnO(2) coating doped with 5 wt% MoO(3) were observed to change and red-shifted from 320 nm to 600 nm. SnO(2) thin film promoted with 1 wt% Pt was found to be sensitive to CH(4) containing gas.

8.
Bioresour Technol ; 100(3): 1203-10, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18809323

RESUMO

The potential of using municipal wastewater sludges as a lipid feedstock for biodiesel production was investigated. Primary and secondary sludge samples obtained from a municipal wastewater treatment plant in Tuscaloosa, AL were freeze-dried and subjected to an acid-catalyzed insitu transesterification process. Experiments were conducted to determine the effects of temperature, sulfuric acid concentration, and mass ratio of methanol to sludge on the yield of fatty acid methyl esters (FAMEs). Results indicated a significant interactive effect between temperature, acid concentration, and methanol to sludge mass ratio on the FAME yield for the insitu transesterification of primary sludge, while the FAME yield for secondary sludge was significantly affected by the independent effects of the three factors investigated. The maximum FAME yields were obtained at 75 degrees C, 5% (v/v) H(2)SO(4), and 12:1 methanol to sludge mass ratio and were 14.5% and 2.5% for primary and secondary sludge, respectively. Gas chromatography (GC) analysis of the FAMEs revealed a similar fatty acid composition for both primary and secondary sludge. An economic analysis estimated the cost of $3.23/gallon for a neat biodiesel obtained from this process at an assumed yield of 10% FAMEs/dry weight of sludge.


Assuntos
Fontes de Energia Bioelétrica , Reatores Biológicos/microbiologia , Metanol/metabolismo , Modelos Biológicos , Esgotos/microbiologia , Cidades , Simulação por Computador , Esterificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA