Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 676: 6-12, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37480690

RESUMO

Phenotypic screening is gaining attention as a powerful method for identifying compounds that regulate cellular phenotypes of interest through novel mechanisms of action. Recently, a new modality of compounds, called molecular glues, which can induce the degradation of target proteins by forming ternary complexes of E3 ligases, has emerged from phenotypic screening. In this study, using global proteomic analysis, we identified a novel Cyclin K degrader, T4, which was previously discovered through phenotypic screening for alternative polyadenylation regulation. Our detailed mechanistic analysis revealed that T4 induced Cyclin K degradation, leading to the regulation of alternative polyadenylation. Additionally, we generated a more potent Cyclin K degrader, TR-213, through a structure-activity relationship study of T4. T4 and TR-213 are structurally distinct from other Cyclin K degraders and can be used as novel chemical tools to further analyze the degradation of Cyclin K and the regulation of alternative polyadenylation.


Assuntos
Poliadenilação , Proteômica , Ciclinas , Proteólise , Relação Estrutura-Atividade
2.
Angew Chem Int Ed Engl ; 60(17): 9279-9283, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33433953

RESUMO

Plasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the ß5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P. falciparum isolates in vitro and reduces parasitemia in humanized, P. falciparum-infected mice.


Assuntos
Antimaláricos/farmacologia , Desenvolvimento de Medicamentos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Malária Falciparum/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/química
3.
J Med Chem ; 66(2): 1484-1508, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36630286

RESUMO

With increasing reports of resistance to artemisinins and artemisinin-combination therapies, targeting the Plasmodium proteasome is a promising strategy for antimalarial development. We recently reported a highly selective Plasmodium falciparum proteasome inhibitor with anti-malarial activity in the humanized mouse model. To balance the permeability of the series of macrocycles with other drug-like properties, we conducted further structure-activity relationship studies on a biphenyl ether-tethered macrocyclic scaffold. Extensive SAR studies around the P1, P3, and P5 groups and peptide backbone identified compound TDI-8414. TDI-8414 showed nanomolar antiparasitic activity, no toxicity to HepG2 cells, high selectivity against the Plasmodium proteasome over the human constitutive proteasome and immunoproteasome, improved solubility and PAMPA permeability, and enhanced metabolic stability in microsomes and plasma of both humans and mice.


Assuntos
Antimaláricos , Plasmodium , Humanos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Relação Estrutura-Atividade , Plasmodium falciparum/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química
4.
Chemistry ; 18(31): 9682-90, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22760948

RESUMO

The total syntheses of (+)-polygalolide A and (+)-polygalolide B have been completed by using a carbonyl ylide cycloaddition strategy. Three of the four stereocenters, including two consecutive tetrasubstituted carbon atoms at C2 and C8, were incorporated through internal asymmetric induction from the stereocenter at C7 by a [Rh(2) (OAc)(4)]-catalyzed carbonyl ylide formation/intramolecular 1,3-dipolar cycloaddition sequence. The arylmethylidene moiety of these natural products was successfully installed by a Mukaiyama aldol-type reaction of a silyl enol ether with a dimethyl acetal, followed by elimination under basic conditions. We have also developed an alternative approach to the carbonyl ylide precursor based on a hetero-Michael reaction. This approach requires 18 steps, and the natural products were obtained in 9.8 and 9.3 % overall yields. Comparison of specific rotations of the synthetic materials and natural products suggests that polygalolides are biosynthesized in nearly racemic forms through a [5+2] cycloaddition between a fructose-derived oxypyrylium zwitterion with an isoprene derivative.


Assuntos
Fenóis/síntese química , Catálise , Estrutura Molecular , Fenóis/química , Estereoisomerismo
5.
J Med Chem ; 65(13): 9350-9375, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35727231

RESUMO

With over 200 million cases and close to half a million deaths each year, malaria is a threat to global health, particularly in developing countries. Plasmodium falciparum, the parasite that causes the most severe form of the disease, has developed resistance to all antimalarial drugs. Resistance to the first-line antimalarial artemisinin and to artemisinin combination therapies is widespread in Southeast Asia and is emerging in sub-Saharan Africa. The P. falciparum proteasome is an attractive antimalarial target because its inhibition kills the parasite at multiple stages of its life cycle and restores artemisinin sensitivity in parasites that have become resistant through mutation in Kelch K13. Here, we detail our efforts to develop noncovalent, macrocyclic peptide malaria proteasome inhibitors, guided by structural analysis and pharmacokinetic properties, leading to a potent, species-selective, metabolically stable inhibitor.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Resistência a Medicamentos , Humanos , Malária Falciparum/tratamento farmacológico , Peptídeos/uso terapêutico , Plasmodium falciparum , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Proteínas de Protozoários/genética
6.
J Med Chem ; 64(9): 6262-6272, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33949190

RESUMO

Treatment of tuberculosis (TB) currently takes at least 6 months. Latent Mycobacterium tuberculosis (Mtb) is phenotypically tolerant to most anti-TB drugs. A key hypothesis is that drugs that kill nonreplicating (NR) Mtb may shorten treatment when used in combination with conventional drugs. The Mtb proteasome (Mtb20S) could be such a target because its pharmacological inhibition kills NR Mtb and its genetic deletion renders Mtb unable to persist in mice. Here, we report a series of macrocyclic peptides that potently and selectively target the Mtb20S over human proteasomes, including macrocycle 6. The cocrystal structure of macrocycle 6 with Mtb20S revealed structural bases for the species selectivity. Inhibition of 20S within Mtb by 6 dose dependently led to the accumulation of Pup-tagged GFP that is degradable but resistant to depupylation and death of nonreplicating Mtb under nitrosative stress. These results suggest that compounds of this class have the potential to develop as anti-TB therapeutics.


Assuntos
Mycobacterium tuberculosis/enzimologia , Peptídeos Cíclicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Desenho de Fármacos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
7.
J Med Chem ; 61(17): 7710-7728, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30067358

RESUMO

Cyclin-dependent kinase 12 (CDK12) plays a key role in the coordination of transcription with elongation and mRNA processing. CDK12 mutations found in tumors and CDK12 inhibition sensitize cancer cells to DNA-damaging reagents and DNA-repair inhibitors. This suggests that CDK12 inhibitors are potential therapeutics for cancer that may cause synthetic lethality. Here, we report the discovery of 3-benzyl-1-( trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea derivatives as novel and selective CDK12 inhibitors. Structure-activity relationship studies of a HTS hit, structure-based drug design, and conformation-oriented design using the Cambridge Structural Database afforded the optimized compound 2, which exhibited not only potent CDK12 (and CDK13) inhibitory activity and excellent selectivity but also good physicochemical properties. Furthermore, 2 inhibited the phosphorylation of Ser2 in the C-terminal domain of RNA polymerase II and induced growth inhibition in SK-BR-3 cells. Therefore, 2 represents an excellent chemical probe for functional studies of CDK12 and could be a promising lead compound for drug discovery.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular , Quinases Ciclina-Dependentes/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Inibidores Enzimáticos/química , Feminino , Humanos , Fosforilação , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA