RESUMO
Correction for 'Modeling the heating and cooling of a chromophore after photoexcitation' by Elizete Ventura et al., Phys. Chem. Chem. Phys., 2022, 24, 9403-9410, https://doi.org/10.1039/D2CP00686C.
RESUMO
The heating of a chromophore due to internal conversion and its cooling down due to energy dissipation to the solvent are crucial phenomena to characterize molecular photoprocesses. In this work, we simulated the ab initio nonadiabatic dynamics of cytosine, a prototypical chromophore undergoing ultrafast internal conversion, in three solvents-argon matrix, benzene, and water-spanning an extensive range of interactions. We implemented an analytical energy-transfer model to analyze these data and extract heating and cooling times. The model accounts for nonadiabatic effects, and excited- and ground-state energy transfer, and can analyze data from any dataset containing kinetic energy as a function of time. Cytosine heats up in the subpicosecond scale and cools down within 25, 4, and 1.3 ps in argon, benzene, and water, respectively. The time constants reveal that a significant fraction of the benzene and water heating occurs while cytosine is still electronically excited.
Assuntos
Benzeno , Calefação , Argônio , Citosina , Solventes , ÁguaRESUMO
This study presents the synthesis, characterisation and theoretical calculations of compounds that contain electron donor and withdrawing groups connected through a π-conjugated benzazolic structure. The compounds in solution show an absorption maximum in the UV-visible spectrum (380-390 nm) due to spin and symmetry allowed electronic 1ππ* transitions with no clear evidence for charge transfer in either compound in the ground state. A fluorescence emission located in the violet-blue-green region, tailored by solvent polarity, with a large Stokes shift was observed. Taking the long-wavelength emission into account, the Lippert-Mataga plot indicates a positive solvatochromism in the solvent polarity function (Δf) range 0.02-0.20, related to the occurrence of an ICT mechanism in the excited state. At Δf greater than 0.20, the polarity of the medium seems no longer to increase the stabilization of the compounds, reaching a plateau. Time-dependent density functional theory (TD-DFT) and resolution-of-identity second-order approximate coupled-cluster (RI-CC2) calculations were also used to better understand the excited state of these compounds. The results indicated that ESIPT was disfavoured in the compounds, mainly in polar solvents, and the emission wavelengths were primarily associated with ICT. In summary, in these push-pull compounds, the electron donating and withdrawing groups do not favour the ESIPT process.