Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(2): 433-443.e5, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792576

RESUMO

Pfs230 domain 1 (Pfs230D1) is an advanced malaria transmission-blocking vaccine antigen demonstrating high functional activity in clinical trials. However, the structural and functional correlates of transmission-blocking activity are not defined. Here, we characterized a panel of human monoclonal antibodies (hmAbs) elicited in vaccinees immunized with Pfs230D1. These hmAbs exhibited diverse transmission-reducing activity, yet all bound to Pfs230D1 with nanomolar affinity. We compiled epitope-binning data for seventeen hmAbs and structures of nine hmAbs complexes to construct a high-resolution epitope map and revealed that potent transmission-reducing hmAbs bound to one face of Pfs230D1, while non-potent hmAbs bound to the opposing side. The structure of Pfs230D1D2 revealed that non-potent transmission-reducing epitopes were occluded by the second domain. The hmAb epitope map delineated binary hmAb combinations that synergized for extremely high-potency, transmission-reducing activity. This work provides a high-resolution guide for structure-based design of enhanced immunogens and informs diagnostics that measure the transmission-reducing response.


Assuntos
Vacinas Antimaláricas , Humanos , Epitopos , Anticorpos Neutralizantes , Antígenos , Anticorpos Antivirais
2.
PLoS Pathog ; 20(3): e1011879, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437239

RESUMO

Placental accumulation of Plasmodium falciparum infected erythrocytes results in maternal anemia, low birth weight, and pregnancy loss. The parasite protein VAR2CSA facilitates the accumulation of infected erythrocytes in the placenta through interaction with the host receptor chondroitin sulfate A (CSA). Antibodies that prevent the VAR2CSA-CSA interaction correlate with protection from placental malaria, and VAR2CSA is a high-priority placental malaria vaccine antigen. Here, structure-guided design leveraging the full-length structures of VAR2CSA produced a stable immunogen that retains the critical conserved functional elements of VAR2CSA. The design expressed with a six-fold greater yield than the full-length protein and elicited antibodies that prevent adhesion of infected erythrocytes to CSA. The reduced size and adaptability of the designed immunogen enable efficient production of multiple variants of VAR2CSA for use in a cocktail vaccination strategy to increase the breadth of protection. These designs form strong foundations for the development of potent broadly protective placental malaria vaccines.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Gravidez , Feminino , Placenta/metabolismo , Malária Falciparum/parasitologia , Anticorpos Antiprotozoários , Plasmodium falciparum/metabolismo , Antígenos de Protozoários , Sulfatos de Condroitina/metabolismo , Eritrócitos/parasitologia
3.
Blood ; 142(23): 2016-2028, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37832027

RESUMO

The malaria parasite Plasmodium falciparum invades and replicates asexually within human erythrocytes. CD44 expressed on erythrocytes was previously identified as an important host factor for P falciparum infection through a forward genetic screen, but little is known about its regulation or function in these cells, nor how it may be used by the parasite. We found that CD44 can be efficiently deleted from primary human hematopoietic stem cells using CRISPR/Cas9 genome editing, and that the efficiency of ex vivo erythropoiesis to enucleated cultured red blood cells (cRBCs) is not affected by lack of CD44. However, the rate of P falciparum invasion was reduced in CD44-null cRBCs relative to isogenic wild-type control cells, validating CD44 as an important host factor for this parasite. We identified 2 P falciparum invasion ligands as binding partners for CD44, erythrocyte binding antigen 175 (EBA-175) and EBA-140 and demonstrated that their ability to bind to human erythrocytes relies primarily on their canonical receptors, glycophorin A and glycophorin C, respectively. We further show that EBA-175 induces phosphorylation of erythrocyte cytoskeletal proteins in a CD44-dependent manner. Our findings support a model in which P falciparum exploits CD44 as a coreceptor during invasion of human erythrocytes, stimulating CD44-dependent phosphorylation of host cytoskeletal proteins that alter host cell deformability and facilitate parasite entry.


Assuntos
Eritrócitos , Malária Falciparum , Plasmodium falciparum , Humanos , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Proteínas do Citoesqueleto , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Receptores de Hialuronatos/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo
4.
J Biol Chem ; 298(9): 102241, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809642

RESUMO

Malaria and other apicomplexan-caused diseases affect millions of humans, agricultural animals, and pets. Cell traversal is a common feature used by multiple apicomplexan parasites to migrate through host cells and can be exploited to develop therapeutics against these deadly parasites. Here, we provide insights into the mechanism of the Cell-traversal protein for ookinetes and sporozoites (CelTOS), a conserved cell-traversal protein in apicomplexan parasites and malaria vaccine candidate. CelTOS has previously been shown to form pores in cell membranes to enable traversal of parasites through cells. We establish roles for the distinct protein regions of Plasmodium vivax CelTOS and examine the mechanism of pore formation. We further demonstrate that CelTOS dimer dissociation is required for pore formation, as disulfide bridging between monomers inhibits pore formation, and this inhibition is rescued by disulfide-bridge reduction. We also show that a helix-destabilizing amino acid, Pro127, allows CelTOS to undergo significant conformational changes to assemble into pores. The flexible C terminus of CelTOS is a negative regulator that limits pore formation. Finally, we highlight that lipid binding is a prerequisite for pore assembly as mutation of a phospholipids-binding site in CelTOS resulted in loss of lipid binding and abrogated pore formation. These findings identify critical regions in CelTOS and will aid in understanding the egress mechanism of malaria and other apicomplexan parasites as well as have implications for studying the function of other essential pore-forming proteins.


Assuntos
Vacinas Antimaláricas , Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Sítios de Ligação , Dissulfetos/química , Humanos , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Fosfolipídeos/imunologia , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Prolina/química , Prolina/genética , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Esporozoítos/genética , Esporozoítos/imunologia
5.
J Cell Sci ; 134(5)2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32034083

RESUMO

During transmission of malaria-causing parasites from mosquito to mammal, Plasmodium sporozoites migrate at high speed within the skin to access the bloodstream and infect the liver. This unusual gliding motility is based on retrograde flow of membrane proteins and highly dynamic actin filaments that provide short tracks for a myosin motor. Using laser tweezers and parasite mutants, we previously suggested that actin filaments form macromolecular complexes with plasma membrane-spanning adhesins to generate force during migration. Mutations in the actin-binding region of profilin, a near ubiquitous actin-binding protein, revealed that loss of actin binding also correlates with loss of force production and motility. Here, we show that different mutations in profilin, that do not affect actin binding in vitro, still generate lower force during Plasmodium sporozoite migration. Lower force generation inversely correlates with increased retrograde flow suggesting that, like in mammalian cells, the slow down of flow to generate force is the key underlying principle governing Plasmodium gliding motility.


Assuntos
Malária , Parasitos , Actinas/genética , Animais , Plasmodium berghei , Profilinas/genética , Proteínas de Protozoários/genética
6.
Blood ; 133(17): 1909-1918, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-30692120

RESUMO

Human ADAMTS13 is a multidomain protein with metalloprotease (M), disintegrin-like (D), thrombospondin-1 (T), Cys-rich (C), and spacer (S) domains, followed by 7 additional T domains and 2 CUB (complement components C1r and C1s, sea urchin protein Uegf, and bone morphogenetic protein-1) domains. ADAMTS13 inhibits the growth of von Willebrand factor (VWF)-platelet aggregates by cleaving the cryptic Tyr1605-Met1606 bond in the VWF A2 domain. ADAMTS13 is regulated by substrate-induced allosteric activation; without shear stress, the distal T8-CUB domains markedly inhibit VWF cleavage, and binding of VWF domain D4 or selected monoclonal antibodies (MAbs) to distal ADAMTS13 domains relieves this autoinhibition. By small angle X-ray scattering (SAXS), ADAMTS13 adopts a hairpin-like conformation with distal T7-CUB domains close to the proximal MDTCS domains and a hinge point between T4 and T5. The hairpin projects like a handle away from the core MDTCS and T7-CUB complex and contains distal T domains that are dispensable for allosteric regulation. Truncated constructs that lack the T8-CUB domains are not autoinhibited and cannot be activated by VWF D4 but retain the hairpin fold. Allosteric activation by VWF D4 requires T7, T8, and the 58-amino acid residue linker between T8 and CUB1. Deletion of T3 to T6 produced the smallest construct (delT3-6) examined that could be activated by MAbs and VWF D4. Columba livia (pigeon) ADAMTS13 (pADAMTS13) resembles human delT3-6, retains normal activation by VWF D4, and has a SAXS envelope consistent with amputation of the hairpin containing the dispensable T domains of human ADAMTS13. Our findings suggest that human delT3-6 and pADAMTS13 approach a "minimal" structure for allosterically regulated ADAMTS13.


Assuntos
Proteína ADAMTS13/química , Proteína ADAMTS13/metabolismo , Mutação , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Fator de von Willebrand/metabolismo , Proteína ADAMTS13/genética , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Humanos , Modelos Moleculares , Mutagênese , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
J Immunol ; 202(9): 2648-2660, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30944159

RESUMO

Plasmodium vivax invasion of reticulocytes relies on distinct receptor-ligand interactions between the parasite and host erythrocytes. Engagement of the highly polymorphic domain II of the P. vivax Duffy-binding protein (DBPII) with the erythrocyte's Duffy Ag receptor for chemokines (DARC) is essential. Some P. vivax-exposed individuals acquired Abs to DBPII that block DBPII-DARC interaction and inhibit P. vivax reticulocyte invasion, and Ab levels correlate with protection against P. vivax malaria. To better understand the functional characteristics and fine specificity of protective human Abs to DBPII, we sorted single DBPII-specific IgG+ memory B cells from three individuals with high blocking activity to DBPII. We identified 12 DBPII-specific human mAbs from distinct lineages that blocked DBPII-DARC binding. All mAbs were P. vivax strain transcending and targeted known binding motifs of DBPII with DARC. Eleven mAbs competed with each other for binding, indicating recognition of the same or overlapping epitopes. Naturally acquired blocking Abs to DBPII from individuals with high levels residing in different P. vivax-endemic areas worldwide competed with mAbs, suggesting broadly shared recognition sites. We also found that mAbs inhibited P. vivax entry into reticulocytes in vitro. These findings suggest that IgG+ memory B cell activity in individuals with P. vivax strain-transcending Abs to DBPII display a limited clonal response with inhibitory blocking directed against a distinct region of the molecule.


Assuntos
Anticorpos Bloqueadores/imunologia , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Linfócitos B/imunologia , Memória Imunológica , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Antígenos de Protozoários/imunologia , Linfócitos B/patologia , Feminino , Humanos , Malária Vivax/patologia , Malária Vivax/prevenção & controle , Masculino , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia
8.
J Biol Chem ; 294(36): 13344-13354, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31320476

RESUMO

Members of the Acinetobacter baumannii-calcoaceticus complex are nosocomial pathogens frequently causing multidrug-resistant infections that are increasing at alarming rates. A. baumannii has become the Gram-negative bacterium with the highest rate of multidrug resistance. As such, it is categorized by the World Health Organization as a critical priority for the research and development of new antimicrobial therapies. The zinc-dependent metalloendopeptidase CpaA is a predominant substrate of the type II secretion system (T2SS). CpaA is also a virulence factor of medically relevant Acinetobacter strains that specifically degrade the human glycoprotein coagulation factor XII and not its deglycosylated form, but the mechanism for this specificity is unknown. CpaB is a membrane-anchored T2SS chaperone that interacts with CpaA and is required for its stability and secretion. Here, we report the crystal structure of the CpaAB complex at 2.6-Å resolution, revealing four glycan-binding domains in CpaA that were not predicted from its primary sequence and may explain CpaA's glycoprotein-targeting activity. The structure of the complex identified a novel mode for chaperone-protease interactions in which the protease surrounds the chaperone. The CpaAB organization was akin to zymogen inactivation, with CpaB serving as a prodomain that inhibits catalytically active CpaA. CpaB contains a C-terminal tail that appears to block access to the CpaA catalytic site, and functional experiments with truncated variants indicated that this tail is dispensable for CpaA expression and secretion. Our results provide new insight into the mechanism of CpaA secretion and may inform the future development of therapeutic strategies for managing Acinetobacter infections.


Assuntos
Acinetobacter/enzimologia , Proteínas de Bactérias/metabolismo , Metaloproteases/metabolismo , Chaperonas Moleculares/metabolismo , Sistemas de Secreção Tipo II/metabolismo , Proteínas de Bactérias/química , Metaloproteases/química , Modelos Moleculares , Chaperonas Moleculares/química , Conformação Proteica , Sistemas de Secreção Tipo II/química
9.
Proc Natl Acad Sci U S A ; 114(16): 4225-4230, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373555

RESUMO

Invasion of the red blood cell (RBC) by the Plasmodium parasite defines the start of malaria disease pathogenesis. To date, experimental investigations into invasion have focused predominantly on the role of parasite adhesins or signaling pathways and the identity of binding receptors on the red cell surface. A potential role for signaling pathways within the erythrocyte, which might alter red cell biophysical properties to facilitate invasion, has largely been ignored. The parasite erythrocyte-binding antigen 175 (EBA175), a protein required for entry in most parasite strains, plays a key role by binding to glycophorin A (GPA) on the red cell surface, although the function of this binding interaction is unknown. Here, using real-time deformability cytometry and flicker spectroscopy to define biophysical properties of the erythrocyte, we show that EBA175 binding to GPA leads to an increase in the cytoskeletal tension of the red cell and a reduction in the bending modulus of the cell's membrane. We isolate the changes in the cytoskeleton and membrane and show that reduction in the bending modulus is directly correlated with parasite invasion efficiency. These data strongly imply that the malaria parasite primes the erythrocyte surface through its binding antigens, altering the biophysical nature of the target cell and thus reducing a critical energy barrier to invasion. This finding would constitute a major change in our concept of malaria parasite invasion, suggesting it is, in fact, a balance between parasite and host cell physical forces working together to facilitate entry.


Assuntos
Antígenos de Protozoários/metabolismo , Membrana Celular/patologia , Eritrócitos/patologia , Glicoforinas/metabolismo , Malária Falciparum/patologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/genética , Biofísica , Membrana Celular/metabolismo , Membrana Celular/parasitologia , Citoesqueleto , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Glicoforinas/genética , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/isolamento & purificação , Ligação Proteica , Proteínas de Protozoários/genética , Transdução de Sinais
10.
Blood ; 130(12): 1441-1444, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28754683

RESUMO

Plasmodium vivax is the most prevalent parasite species that causes malaria in humans and exclusively infects reticulocytes. Reticulocyte infection is facilitated by P vivax Duffy binding protein (DBP), which utilizes DARC (Duffy antigen receptor for chemokines) as an entry point. However, the selective tropism of P vivax for transferrin receptor (CD71)-positive reticulocytes remained unexplained, given the constitutive expression of DARC during reticulocyte maturation. CD71/RNA double staining of reticulocytes enriched from adult peripheral blood reveals 4 distinct reticulocyte populations: CD71high/RNAhigh (∼0.016%), CD71low/RNAhigh (∼0.059%), CD71neg/RNAhigh (∼0.37%), CD71neg/RNAlow (∼0.55%), and erythrocytes CD71neg/RNAneg (∼99%). We hypothesized that selective association of DBP with a small population of immature reticulocytes could explain the preference of P vivax for reticulocytes. Binding of specific monoclonal anti-DARC antibodies and recombinant DBP to CD71high/RNAhigh reticulocytes was significantly higher compared with other reticulocyte populations and erythrocytes. Interestingly, the total DARC protein throughout reticulocyte maturation was constant. The data suggest that selective exposure of the DBP binding site within DARC is key to the preferential binding of DBP to immature reticulocytes, which is the potential mechanism underlying the preferential infection of a reticulocyte subset by P vivax.


Assuntos
Sistema do Grupo Sanguíneo Duffy/química , Sistema do Grupo Sanguíneo Duffy/metabolismo , Espaço Extracelular/química , Plasmodium vivax/fisiologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Reticulócitos/citologia , Reticulócitos/metabolismo , Tropismo/fisiologia , Especificidade de Anticorpos/imunologia , Antígenos de Protozoários/metabolismo , Diferenciação Celular , Eritrócitos/parasitologia , Humanos , Domínios Proteicos , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
11.
Nat Chem Biol ; 13(7): 730-736, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28481346

RESUMO

Although tetracyclines are an important class of antibiotics for use in agriculture and the clinic, their efficacy is threatened by increasing resistance. Resistance to tetracyclines can occur through efflux, ribosomal protection, or enzymatic inactivation. Surprisingly, tetracycline enzymatic inactivation has remained largely unexplored, despite providing the distinct advantage of antibiotic clearance. The tetracycline destructases are a recently discovered family of tetracycline-inactivating flavoenzymes from pathogens and soil metagenomes that have a high potential for broad dissemination. Here, we show that tetracycline destructases accommodate tetracycline-class antibiotics in diverse and novel orientations for catalysis, and antibiotic binding drives unprecedented structural dynamics facilitating tetracycline inactivation. We identify a key inhibitor binding mode that locks the flavin adenine dinucleotide cofactor in an inactive state, functionally rescuing tetracycline activity. Our results reveal the potential of a new tetracycline and tetracycline destructase inhibitor combination therapy strategy to overcome resistance by enzymatic inactivation and restore the use of an important class of antibiotics.


Assuntos
Antibacterianos/metabolismo , Inibidores Enzimáticos/farmacologia , Legionella longbeachae/efeitos dos fármacos , Legionella longbeachae/enzimologia , Resistência a Tetraciclina/efeitos dos fármacos , Tetraciclina/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Flavina-Adenina Dinucleotídeo/metabolismo , Legionella longbeachae/metabolismo , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade , Tetraciclina/química , Tetraciclina/farmacologia
12.
J Biol Chem ; 292(48): 19628-19638, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982978

RESUMO

Acinetobacter baumannii, Acinetobacter nosocomialis, and Acinetobacter pittii are a frequent cause of multidrug-resistant, healthcare-associated infections. Our previous work demonstrated that A. nosocomialis M2 possesses a functional type II secretion system (T2SS) that is required for full virulence. Further, we identified the metallo-endopeptidase CpaA, which has been shown previously to cleave human Factor V and deregulate blood coagulation, as the most abundant type II secreted effector protein. We also demonstrated that its secretion is dependent on CpaB, a membrane-bound chaperone. In this study, we show that CpaA expression and secretion are conserved across several medically relevant Acinetobacter species. Additionally, we demonstrate that deletion of cpaA results in attenuation of A. nosocomialis M2 virulence in moth and mouse models. The virulence defects resulting from the deletion of cpaA were comparable with those observed upon abrogation of T2SS activity. The virulence defects resulting from the deletion of cpaA are comparable with those observed upon abrogation of T2SS activity. We also show that CpaA and CpaB strongly interact, forming a complex in a 1:1 ratio. Interestingly, deletion of the N-terminal transmembrane domain of CpaB results in robust secretion of CpaA and CpaB, indicating that the transmembrane domain is dispensable for CpaA secretion and likely functions to retain CpaB inside the cell. Limited proteolysis of spheroplasts revealed that the C-terminal domain of CpaB is exposed to the periplasm, suggesting that this is the site where CpaA and CpaB interact in vivo Last, we show that CpaB does not abolish the proteolytic activity of CpaA against human Factor V. We conclude that CpaA is, to the best of our knowledge, the first characterized, bona fide virulence factor secreted by Acinetobacter species.


Assuntos
Acinetobacter/patogenicidade , Chaperonas Moleculares/metabolismo , Peptídeo Hidrolases/metabolismo , Acinetobacter/enzimologia , Acinetobacter/metabolismo , Animais , Fator V/metabolismo , Larva/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteólise , Baço/microbiologia , Virulência
13.
PLoS Genet ; 11(8): e1005434, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26291965

RESUMO

Toxoplasma gondii has evolved a number of strategies to evade immune responses in its many hosts. Previous genetic mapping of crosses between clonal type 1, 2, and 3 strains of T. gondii, which are prevalent in Europe and North America, identified two rhoptry proteins, ROP5 and ROP18, that function together to block innate immune mechanisms activated by interferon gamma (IFNg) in murine hosts. However, the contribution of these and other virulence factors in more genetically divergent South American strains is unknown. Here we utilized a cross between the intermediately virulent North American type 2 ME49 strain and the highly virulent South American type 10 VAND strain to map the genetic basis for differences in virulence in the mouse. Quantitative trait locus (QTL) analysis of this new cross identified one peak that spanned the ROP5 locus on chromosome XII. CRISPR-Cas9 mediated deletion of all copies of ROP5 in the VAND strain rendered it avirulent and complementation confirmed that ROP5 is the major virulence factor accounting for differences between type 2 and type 10 strains. To extend these observations to other virulent South American strains representing distinct genetic populations, we knocked out ROP5 in type 8 TgCtBr5 and type 4 TgCtBr18 strains, resulting in complete loss of virulence in both backgrounds. Consistent with this, polymorphisms that show strong signatures of positive selection in ROP5 were shown to correspond to regions known to interface with host immunity factors. Because ROP5 and ROP18 function together to resist innate immune mechanisms, and a significant interaction between them was identified in a two-locus scan, we also assessed the role of ROP18 in the virulence of South American strains. Deletion of ROP18 in South American type 4, 8, and 10 strains resulted in complete attenuation in contrast to a partial loss of virulence seen for ROP18 knockouts in previously described type 1 parasites. These data show that ROP5 and ROP18 are conserved virulence factors in genetically diverse strains from North and South America, suggesting they evolved to resist innate immune defenses in ancestral T. gondii strains, and they have subsequently diversified under positive selection.


Assuntos
Proteínas de Protozoários/genética , Doenças dos Roedores/parasitologia , Toxoplasma/genética , Toxoplasmose Animal/parasitologia , Sequência de Aminoácidos , Animais , Animais não Endogâmicos , Variações do Número de Cópias de DNA , Dados de Sequência Molecular , Filogenia , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/química , Locos de Características Quantitativas , América do Sul , Toxoplasma/patogenicidade , Virulência/genética , Fatores de Virulência/genética
14.
Curr Opin Hematol ; 23(3): 215-23, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26766537

RESUMO

PURPOSE OF REVIEW: Red cell receptors provide unique entry points for Plasmodium parasites to initiate blood-stage malaria infection. Parasites encode distinct ligands that bind specifically to both highly abundant and low-copy receptors. Recent advances in the understanding of molecular and structural mechanisms of these interactions provide fundamental insights into receptor-ligand biology and molecular targets for intervention. RECENT FINDINGS: The review focuses on the requirements for known interactions, insight derived from complex structures, and mechanisms of receptor/ligand engagement. Further, novel roles for established red cell membrane proteins, parasite ligands and associated interacting partners have recently been established in red cell invasion. SUMMARY: The new knowledge underlines the intricacies involved in invasion by a eukaryotic parasite into a eukaryotic host cell demonstrated by expanded parasite ligand families, redundancy in red cell receptor engagement, multitiered temporal binding, and the breadth of receptors engaged.


Assuntos
Eritrócitos/metabolismo , Malária/parasitologia , Plasmodium/metabolismo , Plasmodium/patogenicidade , Receptores de Superfície Celular/metabolismo , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Ligantes
16.
PLoS Pathog ; 10(1): e1003869, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24415938

RESUMO

Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.


Assuntos
Antígenos de Protozoários/química , Sistema do Grupo Sanguíneo Duffy/química , Eritrócitos/química , Plasmodium vivax/química , Proteínas de Protozoários/química , Receptores de Superfície Celular/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Linhagem Celular , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Humanos , Evasão da Resposta Imune , Malária Vivax/genética , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Plasmodium vivax/metabolismo , Mutação Puntual , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Relação Estrutura-Atividade
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 9): 1824-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26327372

RESUMO

Haloacid dehalogenases (HADs) are a large enzyme superfamily of more than 500,000 members with roles in numerous metabolic pathways. Plasmodium falciparum HAD1 (PfHAD1) is a sugar phosphatase that regulates the methylerythritol phosphate (MEP) pathway for isoprenoid synthesis in malaria parasites. However, the structural determinants for diverse substrate recognition by HADs are unknown. Here, crystal structures were determined of PfHAD1 in complex with three sugar phosphates selected from a panel of diverse substrates that it utilizes. Cap-open and cap-closed conformations are observed, with cap closure facilitating substrate binding and ordering. These structural changes define the role of cap movement within the major subcategory of C2 HAD enzymes. The structures of an HAD bound to multiple substrates identifies binding and specificity-determining residues that define the structural basis for substrate recognition and catalysis within the HAD superfamily. While the substrate-binding region of the cap domain is flexible in the open conformations, this region becomes ordered and makes direct interactions with the substrate in the closed conformations. These studies further inform the structural and biochemical basis for catalysis within a large superfamily of HAD enzymes with diverse functions.


Assuntos
Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Plasmodium falciparum/enzimologia , Animais , Catálise , Cristalografia por Raios X , Hidrolases/química , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
18.
PLoS Pathog ; 9(5): e1003390, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717209

RESUMO

Disrupting erythrocyte invasion by Plasmodium falciparum is an attractive approach to combat malaria. P. falciparum EBA-175 (PfEBA-175) engages the host receptor Glycophorin A (GpA) during invasion and is a leading vaccine candidate. Antibodies that recognize PfEBA-175 can prevent parasite growth, although not all antibodies are inhibitory. Here, using x-ray crystallography, small-angle x-ray scattering and functional studies, we report the structural basis and mechanism for inhibition by two PfEBA-175 antibodies. Structures of each antibody in complex with the PfEBA-175 receptor binding domain reveal that the most potent inhibitory antibody, R217, engages critical GpA binding residues and the proposed dimer interface of PfEBA-175. A second weakly inhibitory antibody, R218, binds to an asparagine-rich surface loop. We show that the epitopes identified by structural studies are critical for antibody binding. Together, the structural and mapping studies reveal distinct mechanisms of action, with R217 directly preventing receptor binding while R218 allows for receptor binding. Using a direct receptor binding assay we show R217 directly blocks GpA engagement while R218 does not. Our studies elaborate on the complex interaction between PfEBA-175 and GpA and highlight new approaches to targeting the molecular mechanism of P. falciparum invasion of erythrocytes. The results suggest studies aiming to improve the efficacy of blood-stage vaccines, either by selecting single or combining multiple parasite antigens, should assess the antibody response to defined inhibitory epitopes as well as the response to the whole protein antigen. Finally, this work demonstrates the importance of identifying inhibitory-epitopes and avoiding decoy-epitopes in antibody-based therapies, vaccines and diagnostics.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antiprotozoários/química , Antígenos de Protozoários/química , Glicoforinas/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Glicoforinas/genética , Glicoforinas/imunologia , Glicoforinas/metabolismo , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Relação Estrutura-Atividade
19.
Arch Biochem Biophys ; 570: 32-9, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25698123

RESUMO

D-3-phosphoglycerate dehydrogenases (PGDH) from all organisms catalyze the conversion of D-3-phosphoglycerate to phosphohydroxypyruvate as the first step in the biosynthesis of l-serine. This investigation compares the properties of Type 1 PGDHs from seven different species and demonstrates that conserved residues in the ACT and ASB domains of some allow l-serine to act as a feedback inhibitor at low micromolar concentrations. In addition, the serine sensitivity is dependent on the presence of phosphate ions. These residues are most highly conserved among PGDHs from the actinomycetales family, but only certain pathogenic mycobacteria appear to have the full complement of residues required for high sensitivity to serine. These basic residues are also responsible for the presence of dual pH optima in the acidic region that is also phosphate dependent. Analytical ultracentrifugation analysis demonstrates that the dual pH optima do not require changes in oligomeric state. This study also demonstrates that substrate inhibition is a common feature of Type 1 PGDHs and that it is suppressed by phosphate, indicating that phosphate likely interacts at both the catalytic and regulatory sites. The unique features resulting from the complement of basic residues conserved in pathogenic mycobacteria may impart important metabolic advantages to these organisms.


Assuntos
Mycobacterium/enzimologia , Fosfoglicerato Desidrogenase/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Catálise , Corynebacterium glutamicum/metabolismo , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Concentração de Íons de Hidrogênio , Íons , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium marinum/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Fosfatos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina/química , Streptomyces coelicolor/metabolismo , Especificidade por Substrato
20.
Cell Microbiol ; 16(5): 621-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24506585

RESUMO

The malaria parasite Plasmodium utilizes specialized proteins for adherence to cellular receptors in its mosquito vector and human host. Adherence is critical for parasite development, host cell traversal and invasion, and protection from vector and host immune mechanisms. These vital roles have identified several adhesins as vaccine candidates. A deficiency in current adhesin-based vaccines is induction of antibodies targeting non-conserved, non-functional and decoy epitopes due to the use of full length proteins or binding domains. To alleviate the elicitation of non-inhibitory antibodies, conserved functional regions of proteins must be identified and exploited. Structural biology provides the tools necessary to achieve this goal, and has succeeded in defining biologically functional receptor binding and oligomerization interfaces for a number of promising malaria vaccine candidates. We describe here the current knowledge of Plasmodium adhesin structure and function, and how it has illuminated elements of parasite biology and defined interactions at the host/vector and parasite interface.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Adesão Celular , Plasmodium/fisiologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Moléculas de Adesão Celular/genética , Humanos , Plasmodium/química , Plasmodium/genética , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA