Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vet World ; 16(5): 929-938, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37576770

RESUMO

Background and Aim: Prolonged stress causes deleterious effects on both the organism and its microbiota. In this study, we examined the effects of exposure to variable frequency ultrasound (US) on the gut microbiota-liver-brain axis of mice. Materials and Methods: This study was conducted on 20 mature clinically healthy sexually naive C57BL/6J male mice (42-45 days old). Group 1 (Normal) consisted of healthy intact mice (n = 10). Group 2 (Stress) consisted of mice subjected to US-induced stress (n = 10) for 20 days with alternating frequencies (20-45 kHz). Stool samples were collected on days 0, 10, and 20, and the corresponding DNA was later subjected to 16SrRNA sequencing. After mice were sacrificed on day 21, the leukocyte count, blood serum biochemical parameters, and liver and brain antioxidant status were measured. Behavioral testing was performed on days 17, 18, and 19. Results: Ultrasound lead to higher stress and anxiety levels; increase in creatinine by 8.29% and gamma-glutamyltransferase activity by 5 times, a decrease in alkaline phosphatase activity by 38.23%, increase of de Ritis coefficient by 21.34%; increased liver and brain superoxide dismutase level by 20.8% and 21.5%, respectively; the stress-related changes in the gut microbiota composition - Bacteroidaceae and Firmicutes. Conclusion: Subjecting mice to 20 days of US-induced stress leads to systemic disorders due to oxidative stress and a decrease in the diversity of the gut microbiota.

2.
Genes (Basel) ; 13(12)2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36553471

RESUMO

(1) Background: Stroke is the leading cause of serious long-term disability. Walking dysfunction and paresis of the upper extremities occurs in more than 80% of people who have had a stroke. (2) Methods: We studied post-genomic markers in biosamples of muscle and brain tissue from animals that underwent intracerebral hematoma and recovered after 42 days. Our purpose was to understand the biological mechanisms associated with recovery from hemorrhagic stroke. We analyzed the peptides formed after trypsinolysis of samples by HPLC-MS, and the results were processed by bioinformatics methods, including the establishment of biochemical relationships (gene to gene) using topological omics databases such as Reactome and KEGG. (3) Results: In the pig brain, unique compounds were identified which are expressed during the recovery period after traumatic injury. These are molecular factors of activated microglia, and they contribute to the functional recovery of neurons and reduce instances of hematoma, edema, and oxidative stress. Complexes of the main binding factors of the neurotrophins involved in the differentiation and survival of nerve cells were found in muscles. (4) Conclusions: A network of gene interactions has been constructed for proteins involved in the regulation of synaptic transmission, in particular presynaptic vesicular and endocytic processes. The presence of transmitters and transporters associated with stimulation of NMDA receptors at neuromuscular junctions shows the relationship between upper motor neurons and neuromuscular junctions.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Animais , Suínos , Proteômica , Encéfalo/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Músculos/metabolismo , Neurônios Motores/metabolismo , Hematoma
3.
Biomedicines ; 9(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064017

RESUMO

(1) Background: Hemorrhagic stroke is a lethal disease, accounting for 15% of all stroke cases. However, there are very few models of stroke with a hemorrhagic etiology. Research work is devoted to studying the development of cerebrovascular disorders in rats with an intracerebral hematoma model. The aim of this study was to conduct a comprehensive short-term study, including neurological tests, biochemical blood tests, and histomorphological studies of brain structures. (2) Methods: The model was reproduced surgically by traumatizing the brain in the capsula interna area and then injecting autologous blood. Neurological deficit was assessed according to the McGrow stroke-index scale, motor activity, orientation-exploratory behavior, emotionality, and motor functions. On Day 15, after the operation, hematological and biochemical blood tests as well as histological studies of the brain were performed. (3) Results: The overall lethality of the model was 43.7%. Acute intracerebral hematoma in rats causes marked disorders of motor activity and functional impairment, as well as inflammatory processes in the nervous tissue, which persist for at least 14 days. (4) Conclusions: This model reflects the situation observed in the clinic and reproduces the main diagnostic criteria for acute disorders of cerebral circulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA