Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38247894

RESUMO

A 2D U-Net was trained to generate synthetic T1p maps from T2 maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee images from patients with ACL injuries and reconstruction surgeries acquired across three institutions. Network generalizability was evaluated on 343 knees acquired in a clinical setting and 46 knees from simultaneous bilateral acquisition in a research setting. The deep neural network synthesized high-fidelity reconstructions of T1p maps, preserving textures and local T1p elevation patterns in cartilage with a normalized mean square error of 2.4% and Pearson's correlation coefficient of 0.93. Analysis of reconstructed T1p maps within cartilage compartments revealed minimal bias (-0.10 ms), tight limits of agreement, and quantification error (5.7%) below the threshold for clinically significant change (6.42%) associated with osteoarthritis. In an out-of-distribution external test set, synthetic maps preserved T1p textures, but exhibited increased bias and wider limits of agreement. This study demonstrates the capability of image synthesis to reduce acquisition time, derive meaningful information from existing datasets, and suggest a pathway for standardizing T1p as a quantitative biomarker for osteoarthritis.

2.
Bioengineering (Basel) ; 10(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37237586

RESUMO

Background: Gadolinium (Gd)-enhanced Magnetic Resonance Imaging (MRI) is crucial in several applications, including oncology, cardiac imaging, and musculoskeletal inflammatory imaging. One use case is rheumatoid arthritis (RA), a widespread autoimmune condition for which Gd MRI is crucial in imaging synovial joint inflammation, but Gd administration has well-documented safety concerns. As such, algorithms that could synthetically generate post-contrast peripheral joint MR images from non-contrast MR sequences would have immense clinical utility. Moreover, while such algorithms have been investigated for other anatomies, they are largely unexplored for musculoskeletal applications such as RA, and efforts to understand trained models and improve trust in their predictions have been limited in medical imaging. Methods: A dataset of 27 RA patients was used to train algorithms that synthetically generated post-Gd IDEAL wrist coronal T1-weighted scans from pre-contrast scans. UNets and PatchGANs were trained, leveraging an anomaly-weighted L1 loss and global generative adversarial network (GAN) loss for the PatchGAN. Occlusion and uncertainty maps were also generated to understand model performance. Results: UNet synthetic post-contrast images exhibited stronger normalized root mean square error (nRMSE) than PatchGAN in full volumes and the wrist, but PatchGAN outperformed UNet in synovial joints (UNet nRMSEs: volume = 6.29 ± 0.88, wrist = 4.36 ± 0.60, synovial = 26.18 ± 7.45; PatchGAN nRMSEs: volume = 6.72 ± 0.81, wrist = 6.07 ± 1.22, synovial = 23.14 ± 7.37; n = 7). Occlusion maps showed that synovial joints made substantial contributions to PatchGAN and UNet predictions, while uncertainty maps showed that PatchGAN predictions were more confident within those joints. Conclusions: Both pipelines showed promising performance in synthesizing post-contrast images, but PatchGAN performance was stronger and more confident within synovial joints, where an algorithm like this would have maximal clinical utility. Image synthesis approaches are therefore promising for RA and synthetic inflammatory imaging.

3.
Bioengineering (Basel) ; 10(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36829761

RESUMO

Magnetic Resonance Imaging (MRI) offers strong soft tissue contrast but suffers from long acquisition times and requires tedious annotation from radiologists. Traditionally, these challenges have been addressed separately with reconstruction and image analysis algorithms. To see if performance could be improved by treating both as end-to-end, we hosted the K2S challenge, in which challenge participants segmented knee bones and cartilage from 8× undersampled k-space. We curated the 300-patient K2S dataset of multicoil raw k-space and radiologist quality-checked segmentations. 87 teams registered for the challenge and there were 12 submissions, varying in methodologies from serial reconstruction and segmentation to end-to-end networks to another that eschewed a reconstruction algorithm altogether. Four teams produced strong submissions, with the winner having a weighted Dice Similarity Coefficient of 0.910 ± 0.021 across knee bones and cartilage. Interestingly, there was no correlation between reconstruction and segmentation metrics. Further analysis showed the top four submissions were suitable for downstream biomarker analysis, largely preserving cartilage thicknesses and key bone shape features with respect to ground truth. K2S thus showed the value in considering reconstruction and image analysis as end-to-end tasks, as this leaves room for optimization while more realistically reflecting the long-term use case of tools being developed by the MR community.

4.
Sci Rep ; 12(1): 22208, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564430

RESUMO

MRI T2 mapping sequences quantitatively assess tissue health and depict early degenerative changes in musculoskeletal (MSK) tissues like cartilage and intervertebral discs (IVDs) but require long acquisition times. In MSK imaging, small features in cartilage and IVDs are crucial for diagnoses and must be preserved when reconstructing accelerated data. To these ends, we propose region of interest-specific postprocessing of accelerated acquisitions: a recurrent UNet deep learning architecture that provides T2 maps in knee cartilage, hip cartilage, and lumbar spine IVDs from accelerated T2-prepared snapshot gradient-echo acquisitions, optimizing for cartilage and IVD performance with a multi-component loss function that most heavily penalizes errors in those regions. Quantification errors in knee and hip cartilage were under 10% and 9% from acceleration factors R = 2 through 10, respectively, with bias for both under 3 ms for most of R = 2 through 12. In IVDs, mean quantification errors were under 12% from R = 2 through 6. A Gray Level Co-Occurrence Matrix-based scheme showed knee and hip pipelines outperformed state-of-the-art models, retaining smooth textures for most R and sharper ones through moderate R. Our methodology yields robust T2 maps while offering new approaches for optimizing and evaluating reconstruction algorithms to facilitate better preservation of small, clinically relevant features.


Assuntos
Cartilagem Articular , Disco Intervertebral , Humanos , Imageamento por Ressonância Magnética/métodos , Vértebras Lombares/diagnóstico por imagem , Joelho , Articulação do Joelho/diagnóstico por imagem
5.
Sci Rep ; 10(1): 6371, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286452

RESUMO

Knee Osteoarthritis (OA) is a common musculoskeletal disorder in the United States. When diagnosed at early stages, lifestyle interventions such as exercise and weight loss can slow OA progression, but at later stages, only an invasive option is available: total knee replacement (TKR). Though a generally successful procedure, only 2/3 of patients who undergo the procedure report their knees feeling "normal" post-operation, and complications can arise that require revision. This necessitates a model to identify a population at higher risk of TKR, particularly at less advanced stages of OA, such that appropriate treatments can be implemented that slow OA progression and delay TKR. Here, we present a deep learning pipeline that leverages MRI images and clinical and demographic information to predict TKR with AUC 0.834 ± 0.036 (p < 0.05). Most notably, the pipeline predicts TKR with AUC 0.943 ± 0.057 (p < 0.05) for patients without OA. Furthermore, we develop occlusion maps for case-control pairs in test data and compare regions used by the model in both, thereby identifying TKR imaging biomarkers. As such, this work takes strides towards a pipeline with clinical utility, and the biomarkers identified further our understanding of OA progression and eventual TKR onset.


Assuntos
Artroplastia do Joelho , Aprendizado Profundo , Articulação do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Idoso , Estudos de Casos e Controles , Conjuntos de Dados como Assunto , Feminino , Humanos , Articulação do Joelho/patologia , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Osteoartrite do Joelho/cirurgia , Estudos Prospectivos , Resultado do Tratamento , Estados Unidos
6.
Artigo em Inglês | MEDLINE | ID: mdl-29997406

RESUMO

The tongue's deformation during speech can be measured using tagged magnetic resonance imaging, but there is no current method to directly measure the pattern of muscles that activate to produce a given motion. In this paper, the activation pattern of the tongue's muscles is estimated by solving an inverse problem using a random forest. Examples describing different activation patterns and the resulting deformations are generated using a finite-element model of the tongue. These examples form training data for a random forest comprising 30 decision trees to estimate contractions in 262 contractile elements. The method was evaluated on data from tagged magnetic resonance data from actual speech and on simulated data mimicking flaps that might have resulted from glossectomy surgery. The estimation accuracy was modest (5.6% error), but it surpassed a semi-manual approach (8.1% error). The results suggest that a machine learning approach to contraction pattern estimation in the tongue is feasible, even in the presence of flaps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA