Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892167

RESUMO

New ß-amino-substituted porphyrin derivatives bearing carboxy groups were synthesized and their performance as sensitizers in dye-sensitized solar cells (DSSC) was evaluated. The new compounds were obtained in good yields (63-74%) through nucleophilic aromatic substitution reactions with 3-sulfanyl- and 4-sulfanylbenzoic acids. Although the electrochemical studies indicated suitable HOMO and LUMO energy levels for use in DSSC, the devices fabricated with these compounds revealed a low power conversion efficiency (PCE) that is primarily due to the low open-circuit voltage (Voc) and short-circuit current density (Jsc) values.


Assuntos
Porfirinas , Energia Solar , Porfirinas/química , Porfirinas/síntese química
2.
Molecules ; 29(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276609

RESUMO

In the present work, several coumarin-3-carboxamides with different azacrown ether moieties were designed and tested as potential luminescent sensors for metal ions. The derivative containing a 1-aza-15-crown-5 as a metal chelating group was found to yield the strongest response for Ca2+ and Pb2+, exhibiting an eight- and nine-fold emission increase, respectively, while other cations induced no changes in the optical properties of the chemosensor molecule. Job's plots revealed a 1:1 binding stoichiometry, with association constants of 4.8 × 104 and 8.7 × 104 M-1, and limits of detection of 1.21 and 8.04 µM, for Ca2+ and Pb2+, respectively. Computational studies suggest the existence of a PET quenching mechanism, which is inhibited after complexation with each of these two metals. Proton NMR experiments and X-ray crystallography suggest a contribution from the carbonyl groups in the coumarin-3-carboxamide fluorophore in the coordination sphere of the metal ion.

4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835333

RESUMO

Antimicrobial photodynamic therapy (aPDT) has been explored as an innovative therapeutic approach because it can be used to inactivate a variety of microbial forms (vegetative forms and spores) without causing significant damage to host tissues, and without the development of resistance to the photosensitization process. This study assesses the photodynamic antifungal/sporicidal activity of tetra- and octasubstituted phthalocyanine (Pc) dyes with ammonium groups. Tetra- and octasubstituted zinc(II) phthalocyanines (1 and 2) were prepared and tested as photosensitizers (PSs) on Fusarium oxysporum conidia. Photoinactivation (PDI) tests were conducted with photosensitizer (PS) concentrations of 20, 40, and 60 µM under white-light exposure at an irradiance of 135 mW·cm-2, applied during 30 and 60 min (light doses of 243 and 486 J·cm-2). High PDI efficiency corresponding to the inactivation process until the detection limit was observed for both PSs. The tetrasubstituted PS was the most effective, requiring the lowest concentration and the shortest irradiation time for the complete inactivation of conidia (40 µM, 30 min, 243 J·cm-2). Complete inactivation was also achieved with PS 2, but a longer irradiation time and a higher concentration (60 µM, 60 min, 486 J·cm-2) were necessary. Because of the low concentrations and moderate energy doses required to inactivate resistant biological forms such as fungal conidia, these phthalocyanines can be considered potent antifungal photodynamic drugs.


Assuntos
Antifúngicos , Fotoquimioterapia , Esporos Fúngicos , Luz , Fármacos Fotossensibilizantes , Indóis
5.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175243

RESUMO

In this work we pursued research involving the microwave-assisted N-alkylation of a NH pyrrolidine-fused chlorin with methyl 4-(bromomethyl) benzoate and subsequent ester hydrolysis as a straightforward strategy to obtain carboxylic acid functionality in the pyrrolidine-fused chlorin, as a single reaction product. We studied the reaction's scope by extending the N-alkylation of the free-base chlorin and its corresponding Zn(II) complex to other alkyl halides, including 1,4-diiodobutane, N-(2-bromoethyl)phthalimide, and 2-bromoethanaminium bromide. In addition, two new chlorin-dansyl dyads were synthesized by reacting dansyl chloride with the 2-aminoethyl pyrrolidine-fused chlorin (dyad 6) and NH pyrrolidine-fused chlorin (dyad 7). According to spectral studies, the linker length between the two fluorophores influences the response of the dyads to the solvent polarity. Because of the simplicity of these approaches, we believe it will enable access to a vast library of custom-tailored N-functionalized chlorins while preserving their important absorption and emission spectra as photosensitizers in photodynamic therapy (PDT) of cancer and photodynamic inactivation (PDI) of microorganisms.

6.
Bioorg Chem ; 122: 105703, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248982

RESUMO

Telomerase, oncogenes and tumor suppressors are closely associated with tumour occurrence, therefore these structures are being recognized as targets for the development of new anticancer drugs. The efficacy of several molecules in telomerase inhibition and regulation of genes expression, by adduct formation with G-quadruplexes (G4), has been studied by biophysical and biochemical methods with promising results. We report here the synthesis and structural characterization of a small positively charged diketopyrrolo[3,4-c]pyrrole derivative, identified as DPP(PyMe)2, that showed very promising results as G4 stabilizing ligand. The data obtained from UV-Vis and fluorescence experiments suggest that DPP(PyMe)2 presents high affinity to G4 structures. Docking studies and molecular dynamics simulations unraveled the binding modes of the ligand with four G4 structures. The obtained results also allowed us to conclude that the DPP(PyMe)2 ligand binds into the top G-tetrad or in a mixed binding mode depending on the GQ structure. A remarkable selectivity of DPP(PyMe)2 for c-MYC and KRAS 32R in the presence of ds26 was observed by circular dichroism (CD) and fluorescence resonance energy transfer (FRET) melting experiments. CD titrations revealed a stabilization higher than 30 °C in the case of c-MYC G4 structure and, for the same sequence, DPP(PyMe)2 showed the ability to block the activity of Taq polymerase in a dose-dependent manner. The subcellular localization obtained with confocal microscopy corroborates the results obtained by the other techniques and the obtained data suggest that DPP(PyMe)2 is an attractive ligand for the development of G4 labelling probes.


Assuntos
Quadruplex G , DNA/química , Ligantes , Pirróis/farmacologia , Telômero
7.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362367

RESUMO

Details on the unexpected formation of two new (dimethylamino)methyl corrole isomers from the reaction of 5,10,15-tris(pentafluorophenyl)corrolatogallium(III) with sarcosine and paraformaldehyde are presented. Semi-empirical calculations on possible mechanism pathways seem to indicate that the new compounds are probably formed through a Mannich-type reaction. The extension of the protocol to the free-base 5,10,15-tris(pentafluorophenyl)corrole afforded an unexpected new seven-membered ring corrole derivative, confirming the peculiar behavior of corroles towards known reactions when compared to the well-behaved porphyrin counterparts.


Assuntos
Porfirinas , Sarcosina , Porfirinas/química , Isomerismo
8.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364042

RESUMO

The search for accurate and sensitive methods to detect chemical substances, namely cations and anions, is urgent and widely sought due to the enormous impact that some of these chemical species have on human health and on the environment. Here, we present a new platform for the efficient sensing of Cu2+ and Li+ cations. For this purpose, two novel photoactive diketopyrrolopyrrole-rhodamine conjugates were synthesized through the condensation of a diketopyrrolopyrrole dicarbaldehyde with rhodamine B hydrazide. The resulting chemosensors 1 and 2, bearing one or two rhodamine hydrazide moieties, respectively, were characterized by 1H and 13C NMR and high-resolution mass spectrometry, and their photophysical and ion-responsive behaviours were investigated via absorption and fluorescence measurements. Chemosensors 1 and 2 displayed a rapid colorimetric response upon the addition of Cu2+, with a remarkable increase in the absorbance and fluorescence intensities. The addition of other metal ions caused no significant effects. Moreover, the resulting chemosensor-Cu2+ complexes revealed to be good probes for the sensing of Li+ with reversibility and low detection limits. The recognition ability of the new chemosensors was investigated by absorption and fluorescence titrations and competitive studies.


Assuntos
Cobre , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Cobre/análise , Rodaminas/química , Cátions , Espectrometria de Fluorescência
9.
Chemistry ; 27(6): 1990-1994, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33185284

RESUMO

Photodynamic therapy (PDT) is a promising alternative to overcome the resistance of melanoma to conventional therapies. Currently applied photosensitizers (PS) are often based on tetrapyrrolic macrocycles like porphyrins. Unfortunately, in some cases the use of this type of derivative is limited due to their poor solubility in the biological environment. Feasible approaches to surpass this drawback are based on lipid formulations. Besides that, and inspired in the efficacy of potassium iodide (KI) for antimicrobial photodynamic therapy (aPDT), the combined effect of singlet oxygen (1 O2 ) with KI was assessed in this work, as an alternative strategy to potentiate the effect of PDT against resistant melanoma cells.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Micelas , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Oxigênio Singlete
10.
Org Biomol Chem ; 19(29): 6501-6512, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254099

RESUMO

Indomethacin is a potent non-steroidal anti-inflammatory drug (NSAID) with a strong selective inhibitor activity towards cyclooxygenase-2 (COX-2), an enzyme that is highly overexpressed in various tumour cells, being involved in tumourigenesis. Concomitantly, porphyrins have gained much attention as promising photosensitizers (PSs) for the non-invasive photodynamic therapy (PDT) of cancer. Herein, we report the design, and determine the singlet oxygen generation capacity and in vitro cellular toxicity of porphyrin- and chlorin-indomethacin conjugates (P2-Ind and C2-Ind). Both the conjugates were obtained in high yields and were characterized by 1H, 19F and 13C NMR as well as by high resolution mass spectrometry. The singlet oxygen generation properties were assessed by the 1,3-diphenylisobenzofuran singlet oxygen trap method, which showed that C2 and C2-Ind are the best singlet oxygen photosensitizers. In addition, it was found that the presence of indomethacin did not influence the singlet oxygen generation of porphyrin or chlorin. Cytotoxicity studies of the conjugate in human HEp2 cells revealed that the porphyrin- and chlorin-indomethacin conjugates have similar dark cytotoxicities, while chlorin C2 was shown to be the most phototoxic. Despite having lower cellular uptake than C2-Ind after 24 hours, chlorin C2 had a broad localization in HEp2 cells while the chlorin-indomethacin conjugate C2-Ind could be detected in the form of small aggregates. DFT calculations were performed to shed light on the reaction energy involved in the formation of the indomethacin conjugates and to compare the relative stability of selected isomers in solution. Moreover, the calculated energy of their first excited triplet state structures confirmed their use as suitable photosensitizers to generate singlet oxygen for PDT.


Assuntos
Fotoquimioterapia
11.
Sensors (Basel) ; 21(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652615

RESUMO

Anionic species are one of the most common pollutants in residual and freshwaters. The presence of anthropogenic anions in water drastically increases the toxicity to living beings. Here, we report the preparation of a new optical active material based on tri(tosylamino)phthalocyanines grafted to ferromagnetic silica nanoparticles for anion detection and removal. The new unsymmetrical phthalocyanines (Pcs) proved to be excellent chemosensors for several anions (AcO-, Br-, Cl-, CN-, F-, H2PO4-, HSO4-, NO2-, NO3-, and OH-) in dimethyl sulfoxide (DMSO). Furthermore, the Pcs were grafted onto magnetic nanoparticles. The resulting novel hybrid material showed selectivity and sensitivity towards CN-, F-, and OH- anions in DMSO with limit of detection (LoD) of ≈4.0 µM. In water, the new hybrid chemosensor demonstrated selectivity and sensitivity for CN- and OH- anions with LoD of ≈0.2 µM. The new hybrids are easily recovered using a magnet, allowing recyclability and reusability, after acidic treatment, without losing the sensing proprieties.

12.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443350

RESUMO

Diketopyrrolo[3,4-c]pyrroles (DPP) are high-performance organic optoelectronic materials. They have applications in solar cells, fluorescent probes, bioimaging, photodynamic/photothermal therapy, and in many other areas. This article reports a convenient two-step synthesis of various DPP dyes from Pigment Red 254, an inexpensive commercial pigment. The synthesis includes a Suzuki-Miyaura cross-coupling reaction of a bis(4-chlorophenyl)DPP derivative with aryl and hetaryl boronic acids under mild reaction conditions. The new dyes show large Stokes shifts and high fluorescence quantum yields, important features for their potential use in technical and biological applications.

13.
Molecules ; 26(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477299

RESUMO

New porphyrin-pyrrolidine/pyrroline conjugates were prepared by revisiting 1,3-dipolar cycloaddition reactions between a porphyrinic azomethine ylide and a series of dipolarophiles. Cationic conjugates obtained by alkylation of the pyrrolidine/pyrroline cycloadducts showed ability to generate singlet oxygen and to produce iodine in presence of KI when irradiated with visible light. Some of the cationic derivatives showed photobactericidal properties towards a Gram-negative bioluminescent E. coli. In all cases, these features were significantly improved using KI as coadjutant, allowing, under the tested conditions, the photoinactivation of the bacterium until the detection limit of the method with a drastic reduction of the required photosensitizer concentration and irradiation time. The obtained results showed a high correlation between the ability of the cationic porphyrin derivative to produce singlet oxygen and iodine and its E. coli photoinactivation profile.


Assuntos
Antibacterianos , Escherichia coli/crescimento & desenvolvimento , Fármacos Fotossensibilizantes , Porfirinas/química , Pirróis/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/química
14.
Photochem Photobiol Sci ; 19(7): 885-891, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32662457
15.
Photochem Photobiol Sci ; 19(8): 1063-1071, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32613213

RESUMO

Photodynamic inactivation of bacterial and fungal pathogens is a promising alternative to the extensive use of conventional single-target antibiotics and antifungal agents. The combination of photosensitizers and adjuvants can improve the photodynamic inactivation efficiency. In this regard, it has been shown that the use of potassium iodide (KI) as adjuvant increases pathogen killing. Following our interest in this topic, we performed the co-encapsulation of a neutral porphyrin photosensitizer (designated as P1) and KI into micelles and tested the obtained nanoformulations against the human pathogenic fungus Candida albicans. The results of this study showed that the micelles containing P1 and KI displayed a better photodynamic performance towards C. albicans than P1 and KI in solution. It is noteworthy that higher concentrations of KI within the micelles resulted in increased killing of C. albicans. Subcellular localization studies by confocal fluorescence microscopy revealed that P1 was localized in the cell cytoplasm, but not in the nuclei or mitochondria. Overall, our results show that a nanoformulation containing a photosensitizer plus an adjuvant is a promising approach for increasing the efficiency of photodynamic treatment. Actually, the use of this strategy allows a considerable decrease in the amount of both photosensitizer and adjuvant required to achieve pathogen killing.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Micelas , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Iodeto de Potássio/farmacologia , Antifúngicos/química , Cápsulas/química , Cápsulas/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fármacos Fotossensibilizantes/química , Porfirinas/química , Iodeto de Potássio/química
16.
Org Biomol Chem ; 18(7): 1449-1461, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32025685

RESUMO

Chromophore-fullerene C60 hybrids possess interesting properties that enable them to act as heavy atom-free photosensitizers and reactive oxygen species (ROS) producers. Here, two new diketopyrrolopyrrole-C60 conjugates were efficiently synthesized and characterized. The conjugates show broadband absorption in the visible spectral region, in which diketopyrrolopyrrole dyes act as light-harvesting antenna with very high capacity to populate excited triplet states. Furthermore, the ability of diketopyrrolopyrrole-C60 systems to generate singlet molecular oxygen was explored for the first time in solvents of different polarities. The experimental results show that these architectures exhibit very high production rates of this ROS. In addition, a preliminary study on Staphylococcus aureus cell suspensions indicates that both conjugates exhibit phototoxicity after irradiation with green LED light. Thus, the data obtained provide evidence that these diketopyrrolopyrrole-C60 architectures act as potential heavy atom-free photosensitizers in photodynamic inactivation of microorganisms and other singlet oxygen-mediated applications.

17.
Molecules ; 25(11)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517216

RESUMO

The reaction of meso-tetrakis(pentafluorophenyl)porpholactone with azomethine ylides and nitrones affords pyrrolidine-fused and isoxazolidine-fused dihydroporpholactones that display, respectively, isobacteriochlorin- and chlorin-type UV-Vis spectra. These reactions are site-selective, yielding, respectively, 17,18- or 12,13-dihydroporpholactones. The crystal and molecular features of pyrrolidine-fused and isoxazolidine-fused dihydroporpholactones were unveiled from single-crystal X-ray diffraction studies.


Assuntos
Isoxazóis/química , Lactonas/química , Porfirinas/química , Pirrolidinas/química , Difração de Raios X
18.
Molecules ; 25(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290240

RESUMO

The reaction between organic azides and alkyne derivatives via the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is an efficient strategy to combine phthalocyanines and analogues with different materials. As examples of such materials, it can be considered the following ones: graphene oxide, carbon nanotubes, silica nanoparticles, gold nanoparticles, and quantum dots. This approach is also being relevant to conjugate phthalocyanines with carbohydrates and to obtain new sophisticated molecules; in such way, new systems with significant potential applications become available. This review highlights recent developments on the synthesis of phthalocyanine, subphthalocyanine, and porphyrazine derivatives where CuAAC reactions are the key synthetic step.


Assuntos
Azidas/química , Indóis/química , Azidas/síntese química , Catálise , Técnicas de Química Sintética , Química Click , Eletrodos , Indóis/síntese química , Isoindóis , Estrutura Molecular , Polímeros/química
19.
Molecules ; 25(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260294

RESUMO

Azides and porphyrinoids (such as porphyrin and corrole macrocycles) can give rise to new derivatives with significant biological properties and as new materials' components. Significant synthetic approaches have been studied. A wide range of products (e.g., microporous organic networks, rotaxane and dendritic motifs, dendrimers as liquid crystals, as blood substitutes for transfusions and many others) can now be available and used for several medicinal and industrial purposes.


Assuntos
Azidas/química , Porfirinas/química , Estrutura Molecular
20.
Chem Rev ; 117(4): 3192-3253, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28222602

RESUMO

This review covers the functionalization reactions of meso-arylcorroles, both at the inner core, as well as the peripheral positions of the macrocycle. Experimental details for the synthesis of all known metallocorrole types and for the N-alkylation reactions are presented. Key peripheral functionalization reactions such as halogenation, formylation, carboxylation, nitration, sulfonation, and others are discussed in detail, particularly the nucleophilic aromatic substitution and the participation of corroles in cycloaddition reactions as 2π or 4π components (covering Diels-Alder and 1,3-dipolar cycloadditions). Other functionalizations of corroles include a large diversity of reactions, namely Wittig reactions, reactions with methylene active compounds, formation of amines, amides, and imines, and metal catalyzed reactions. At the final section, the reactions involving oxidation and ring expansion of the corrole macrocycle are described comprehensively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA