Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(24): 5411-5427.e23, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37918396

RESUMO

Neurons build synaptic contacts using different protein combinations that define the specificity, function, and plasticity potential of synapses; however, the diversity of synaptic proteomes remains largely unexplored. We prepared synaptosomes from 7 different transgenic mouse lines with fluorescently labeled presynaptic terminals. Combining microdissection of 5 different brain regions with fluorescent-activated synaptosome sorting (FASS), we isolated and analyzed the proteomes of 18 different synapse types. We discovered ∼1,800 unique synapse-type-enriched proteins and allocated thousands of proteins to different types of synapses (https://syndive.org/). We identify shared synaptic protein modules and highlight the proteomic hotspots for synapse specialization. We reveal unique and common features of the striatal dopaminergic proteome and discover the proteome signatures that relate to the functional properties of different interneuron classes. This study provides a molecular systems-biology analysis of synapses and a framework to integrate proteomic information for synapse subtypes of interest with cellular or circuit-level experiments.


Assuntos
Encéfalo , Proteoma , Sinapses , Animais , Camundongos , Encéfalo/metabolismo , Camundongos Transgênicos , Proteoma/metabolismo , Proteômica , Sinapses/metabolismo , Sinaptossomos/metabolismo
2.
Mol Cell ; 83(11): 1839-1855.e13, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267905

RESUMO

Localized translation is vital to polarized cells and requires precise and robust distribution of different mRNAs and ribosomes across the cell. However, the underlying molecular mechanisms are poorly understood and important players are lacking. Here, we discovered a Rab5 effector, the five-subunit endosomal Rab5 and RNA/ribosome intermediary (FERRY) complex, that recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction. FERRY displays preferential binding to certain groups of transcripts, including mRNAs encoding mitochondrial proteins. Deletion of FERRY subunits reduces the endosomal localization of transcripts in cells and has a significant impact on mRNA levels. Clinical studies show that genetic disruption of FERRY causes severe brain damage. We found that, in neurons, FERRY co-localizes with mRNA on early endosomes, and mRNA loaded FERRY-positive endosomes are in close proximity of mitochondria. FERRY thus transforms endosomes into mRNA carriers and plays a key role in regulating mRNA distribution and transport.


Assuntos
Endossomos , Proteínas rab5 de Ligação ao GTP , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Endossomos/metabolismo , Transporte Biológico , Endocitose/fisiologia
3.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34670838

RESUMO

To form synaptic connections and store information, neurons continuously remodel their proteomes. The impressive length of dendrites and axons imposes logistical challenges to maintain synaptic proteins at locations remote from the transcription source (the nucleus). The discovery of thousands of messenger RNAs (mRNAs) near synapses suggested that neurons overcome distance and gain autonomy by producing proteins locally. It is not generally known, however, if, how, and when localized mRNAs are translated into protein. To investigate the translational landscape in neuronal subregions, we performed simultaneous RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) from microdissected rodent brain slices to identify and quantify the transcriptome and translatome in cell bodies (somata) as well as dendrites and axons (neuropil). Thousands of transcripts were differentially translated between somatic and synaptic regions, with many scaffold and signaling molecules displaying increased translation levels in the neuropil. Most translational changes between compartments could be accounted for by differences in RNA abundance. Pervasive translational regulation was observed in both somata and neuropil influenced by specific mRNA features (e.g., untranslated region [UTR] length, RNA-binding protein [RBP] motifs, and upstream open reading frames [uORFs]). For over 800 mRNAs, the dominant source of translation was the neuropil. We constructed a searchable and interactive database for exploring mRNA transcripts and their translation levels in the somata and neuropil [MPI Brain Research, The mRNA translation landscape in the synaptic neuropil. https://public.brain.mpg.de/dashapps/localseq/ Accessed 5 October 2021]. Overall, our findings emphasize the substantial contribution of local translation to maintaining synaptic protein levels and indicate that on-site translational control is an important mechanism to control synaptic strength.


Assuntos
Axônios/metabolismo , Corpo Celular/metabolismo , Dendritos/metabolismo , Neurônios/metabolismo , Biossíntese de Proteínas , Análise de Sequência de RNA/métodos , Animais , Proteoma , RNA Mensageiro/genética , Transcriptoma
4.
J Neurosci ; 39(17): 3188-3203, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30804097

RESUMO

Secreted amyloid precursor protein-alpha (sAPPα) has growth factor-like properties and can modulate long-term potentiation (LTP) and memory. Here, we demonstrate that exposure to sAPPα converts short-lasting LTP into protein-synthesis-dependent late LTP in hippocampal slices from male rats. sAPPß had no discernable effect. We hypothesized that sAPPα facilitated LTP via regulated glutamate receptor trafficking and de novo protein synthesis. We found using a linear mixed model that sAPPα stimulated trafficking of GluA2-lacking AMPARs, as well as NMDARs to the extrasynaptic cell surface, in a calcium/calmodulin-dependent kinase II and protein kinase G-dependent manner. Both cell surface receptor accumulation and LTP facilitation were present even after sAPPα washout and inhibition of receptor trafficking or protein synthesis prevented all these effects. Direct visualization of newly synthesized proteins (FUNCAT-PLA) confirmed the ability of sAPPα to stimulate de novo protein synthesis and revealed GluA1 as one of the upregulated proteins. Therefore, sAPPα generates a coordinated synthesis and trafficking of glutamate receptors to the cell surface that facilitate LTP.SIGNIFICANCE STATEMENT Secreted amyloid precursor protein-alpha (sAPPα) is a neurotrophic and neuroprotective protein that can promote synaptic plasticity and memory, yet the molecular mechanisms underlying these effects are still not well understood. Here, we show that sAPPα facilitates long-term potentiation (LTP) in a concentration-dependent fashion through cellular processes involving de novo protein synthesis and trafficking of both GluA2-lacking AMPARs and NMDARs to the extrasynaptic cell surface. sAPPα also enhances GluA1, but not GluA2, synthesis. The trafficking effects, along with the LTP facilitation, persist after sAPPα washout, revealing a metaplastic capability of exogenous sAPPα administration. sAPPα thus facilitates LTP through coordinated activation of protein synthesis and trafficking of glutamate receptors to the cell surface, where they are positioned for priming LTP.


Assuntos
Precursor de Proteína beta-Amiloide/farmacologia , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Biossíntese de Proteínas/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
5.
Neurobiol Learn Mem ; 173: 107275, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659348

RESUMO

Long-term memory has been associated with morphological changes in the brain, which in turn tightly correlate with changes in synaptic efficacy. Such plasticity is proposed to rely on dendritic spines as a neuronal canvas on which these changes can occur. Given the key role of actin cytoskeleton dynamics in spine morphology, major regulating factors of this process such as Cofilin 1 (Cfl1) and LIM kinase (LIMK), an inhibitor of Cfl1 activity, are prime molecular targets that may regulate dendritic plasticity. Using a contextual fear conditioning paradigm in mice, we found that pharmacological induction of depolymerization of actin filaments through the inhibition of LIMK causes an impairment in memory reconsolidation, as well as in memory consolidation. On top of that, Cfl1 activity is inhibited and its mRNA is downregulated in CA1 neuropil after re-exposure to the training context. Moreover, by pharmacological disruption of actin cytoskeleton dynamics, the process of memory extinction can either be facilitated or impaired. Our results lead to a better understanding of the role of LIMK, Cfl1 and actin cytoskeleton dynamics in the morphological and functional changes underlying the synaptic plasticity of the memory trace.


Assuntos
Actinas/metabolismo , Cofilina 1/metabolismo , Medo/fisiologia , Hipocampo/metabolismo , Quinases Lim/metabolismo , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Masculino , Consolidação da Memória/fisiologia , Camundongos
6.
J Neurosci ; 38(29): 6586-6596, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29941446

RESUMO

In the nervous system, myelination of axons enables rapid impulse conduction and is a specialized function of glial cells. Myelinating glia are the last cell type to emerge in the evolution of vertebrate nervous systems, presumably in ancient jawed vertebrates (gnathostomata) because jawless vertebrates (agnathans) lack myelin. We have hypothesized that, in these unmyelinated species, evolutionary progenitors of myelinating cells must have existed that should still be present in contemporary agnathan species. Here, we used advanced electron microscopic techniques to reveal axon-glia interactions in the sea lamprey Petromyzon marinus By quantitative assessment of the spinal cord and the peripheral lateral line nerve, we observed a marked maturation-dependent growth of axonal calibers. In peripheral nerves, all axons are ensheathed by glial cells either in bundles or, when larger than the threshold caliber of 3 µm, individually. The ensheathing glia are covered by a basal lamina and express SoxE-transcription factors, features of mammalian Remak-type Schwann cells. In larval lamprey, the ensheathment of peripheral axons leaves gaps that are closed in adults. CNS axons are also covered to a considerable extent by glial processes, which contain a high density of intermediate filaments, glycogen particles, large lipid droplets, and desmosomes, similar to mammalian astrocytes. Indeed, by in situ hybridization, these glial cells express the astrocyte marker Aldh1l1 Specimens were of unknown sex. Our observations imply that radial sorting, ensheathment, and presumably also metabolic support of axons are ancient functions of glial cells that predate the evolutionary emergence of myelin in jawed vertebrates.SIGNIFICANCE STATEMENT We used current electron microscopy techniques to examine axon-glia units in a nonmyelinated vertebrate species, the sea lamprey. In the PNS, lamprey axons are fully ensheathed either individually or in bundles by cells ortholog to Schwann cells. In the CNS, axons associate with astrocyte orthologs, which contain glycogen and lipid droplets. We suggest that ensheathment, radial sorting, and metabolic support of axons by glial cells predate the evolutionary emergence of myelin in ancient jawed vertebrates.


Assuntos
Axônios/metabolismo , Axônios/ultraestrutura , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Neuroglia/metabolismo , Animais , Evolução Biológica , Lampreias , Neurogênese/fisiologia
7.
EMBO Rep ; 18(5): 693-711, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28404606

RESUMO

Efficient neuronal function depends on the continued modulation of the local neuronal proteome. Local protein synthesis plays a central role in tuning the neuronal proteome at specific neuronal regions. Various aspects of translation such as the localization of translational machinery, spatial spread of the newly translated proteins, and their site of action are carried out in specialized neuronal subcompartments to result in a localized functional outcome. In this review, we focus on the various aspects of these local translation compartments such as size, biochemical and organelle composition, structural boundaries, and temporal dynamics. We also discuss the apparent absence of definitive components of translation in these local compartments and the emerging state-of-the-art tools that could help dissecting these conundrums in greater detail in the future.


Assuntos
Plasticidade Neuronal , Neurônios/fisiologia , Biossíntese de Proteínas , Animais , Dendritos/fisiologia , Neurônios/citologia , Organelas/fisiologia , Proteoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Nat Methods ; 12(5): 411-4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25775042

RESUMO

Protein synthesis is a dynamic process that tunes the cellular proteome in response to internal and external demands. Metabolic labeling approaches identify the general proteomic response but cannot visualize specific newly synthesized proteins within cells. Here we describe a technique that couples noncanonical amino acid tagging or puromycylation with the proximity ligation assay to visualize specific newly synthesized proteins and monitor their origin, redistribution and turnover in situ.


Assuntos
Fibroblastos/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Anticorpos , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Camundongos , Neurônios/metabolismo , Ratos , Coloração e Rotulagem
9.
EMBO J ; 30(24): 4955-69, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21926968

RESUMO

Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.


Assuntos
Neurônios/fisiologia , Neuropeptídeos/fisiologia , Fosfoproteínas/fisiologia , Vesículas Sinápticas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Dinaminas/metabolismo , Endocitose , Hipocampo/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Neurônios/ultraestrutura , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Retina/fisiologia , Retina/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Convulsões/genética , Transmissão Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestrutura
10.
Angew Chem Int Ed Engl ; 54(12): 3717-21, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25656536

RESUMO

The antibiotic puromycin, which inhibits protein translation, is used in a broad range of biochemical applications. The synthesis, characterization, and biological applications of NVOC-puromycin, a photocaged derivative that is activated by UV illumination, are presented. The caged compound had no effect either on prokaryotic or eukaryotic translation or on the viability of HEK 293 cells. Furthermore, no significant release of ribosome-bound polypeptide chains was detected in vitro. Upon illumination, cytotoxic activity, in vitro translation inhibition, and polypeptide release triggered by the uncaging of NVOC-puromycin were equivalent to those of the commercial compound. The quantum yield of photolysis was determined to be 1.1±0.2% and the NVOC-puromycin was applied to the detection of newly translated proteins with remarkable spatiotemporal resolution by using two-photon laser excitation, puromycin immunohistochemistry, and imaging in rat hippocampal neurons.


Assuntos
Peptídeos/química , Puromicina/química , Animais , Benzaldeídos/química , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Hipocampo/metabolismo , Humanos , Microscopia de Fluorescência , Peptídeos/metabolismo , Fotólise/efeitos da radiação , Biossíntese de Proteínas/efeitos dos fármacos , Puromicina/toxicidade , Ratos , Raios Ultravioleta
11.
J Neurosci ; 32(35): 12192-203, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22933801

RESUMO

How size and shape of presynaptic active zones are regulated at the molecular level has remained elusive. Here we provide insight from studying rod photoreceptor ribbon-type active zones after disruption of CAST/ERC2, one of the cytomatrix of the active zone (CAZ) proteins. Rod photoreceptors were present in normal numbers, and the a-wave of the electroretinogram (ERG)--reflecting their physiological population response--was unchanged in CAST knock-out (CAST(-/-)) mice. Using immunofluorescence and electron microscopy, we found that the size of the rod presynaptic active zones, their Ca(2+) channel complement, and the extension of the outer plexiform layer were diminished. Moreover, we observed sprouting of horizontal and bipolar cells toward the outer nuclear layer indicating impaired rod transmitter release. However, rod synapses of CAST(-/-) mice, unlike in mouse mutants for the CAZ protein Bassoon, displayed anchored ribbons, normal vesicle densities, clustered Ca(2+) channels, and essentially normal molecular organization. The reduction of the rod active zone size went along with diminished amplitudes of the b-wave in scotopic ERGs. Assuming, based on the otherwise intact synaptic structure, an unaltered function of the remaining release apparatus, we take our finding to suggest a scaling of release rate with the size of the active zone. Multielectrode-array recordings of retinal ganglion cells showed decreased contrast sensitivity. This was also observed by optometry, which, moreover, revealed reduced visual acuity. We conclude that CAST supports large active zone size and high rates of transmission at rod ribbon synapses, which are required for normal vision.


Assuntos
Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Deleção de Genes , Terminações Pré-Sinápticas/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Percepção Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Quimera , Feminino , Masculino , Camundongos , Camundongos Knockout , Estimulação Luminosa/métodos , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
12.
J Vis Exp ; (182)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35499346

RESUMO

Understanding protein homeostasis in vivo is key to knowing how the cells work in both physiological and disease conditions. The present protocol describes in vivo labeling and subsequent purification of newly synthesized proteins using an engineered mouse line to direct protein labeling to specific cellular populations. It is an inducible line by Cre recombinase expression of L274G-Methionine tRNA synthetase (MetRS*), enabling azidonorleucine (ANL) incorporation to the proteins, which otherwise will not occur. Using the method described here, it is possible to purify cell-type-specific proteomes labeled in vivo and detect subtle changes in protein content due to sample complexity reduction.


Assuntos
Aminoacil-tRNA Sintetases , Proteoma , Aminoacil-tRNA Sintetases/genética , Animais , Cromatografia de Afinidade , Metionina , Camundongos , Proteostase
13.
Nature ; 434(7035): 889-94, 2005 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-15829963

RESUMO

Hearing relies on faithful synaptic transmission at the ribbon synapse of cochlear inner hair cells (IHCs). At present, the function of presynaptic ribbons at these synapses is still largely unknown. Here we show that anchoring of IHC ribbons is impaired in mouse mutants for the presynaptic scaffolding protein Bassoon. The lack of active-zone-anchored synaptic ribbons reduced the presynaptic readily releasable vesicle pool, and impaired synchronous auditory signalling as revealed by recordings of exocytic IHC capacitance changes and sound-evoked activation of spiral ganglion neurons. Both exocytosis of the hair cell releasable vesicle pool and the number of synchronously activated spiral ganglion neurons co-varied with the number of anchored ribbons during development. Interestingly, ribbon-deficient IHCs were still capable of sustained exocytosis with normal Ca2+-dependence. Endocytic membrane retrieval was intact, but an accumulation of tubular and cisternal membrane profiles was observed in ribbon-deficient IHCs. We conclude that ribbon-dependent synchronous release of multiple vesicles at the hair cell afferent synapse is essential for normal hearing.


Assuntos
Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/fisiologia , Sinapses/metabolismo , Potenciais de Ação , Animais , Cálcio/metabolismo , Cóclea/citologia , Endocitose , Exocitose , Audição/fisiologia , Camundongos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia
14.
Mol Vis ; 16: 2690-700, 2010 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-21179232

RESUMO

PURPOSE: Photoreceptor ribbon synapses translate light-dependent changes of membrane potential into graded transmitter release over several orders of magnitude in intensity. A specialized organelle at the active zone--the synaptic ribbon--is a key player in this process, and it is well known that the ribbon undergoes illumination and thus activity-dependent structural changes. However, the molecular basis for these changes is unknown. The aim of this study was to correlate the known ultrastructural ribbon changes to the distribution of proteins of the presynaptic ribbon complex. METHODS: In an in vitro assay, two distinct structural ribbon states--club-shaped and spherical-shaped--were enriched and the distribution of presynaptic proteins at the rod photoreceptor ribbon complex was analyzed with immunocytochemistry and light and electron microscopy. RESULTS: We show that structural changes of the ribbon correlate with the redistribution of selected presynaptic proteins. The disassembly of the ribbon complex seems to be a multistep process, which starts with the removal of spherical ribbon material while arciform density and active zone plasma membrane proteins remain largely unchanged at their synaptic location. Only later, in a second phase following the removal of ribbon material, the arciform density and plasma membrane proteins are redistributed from their synaptic localization and active zones disappear. CONCLUSIONS: The results of our study show that photoreceptor ribbon and arciform density/plasma membrane components might be influenced differentially by activity-driven processes, thus providing a molecular basis for further investigation of regulatory and adaptive processes in photoreceptor ribbon synaptic transmission.


Assuntos
Células Fotorreceptoras de Vertebrados/metabolismo , Sinapses/metabolismo , Oxirredutases do Álcool , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas Correpressoras , Proteínas de Ligação a DNA/metabolismo , Ácido Egtázico/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura
15.
J Cell Biol ; 168(5): 825-36, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15728193

RESUMO

The ribbon complex of retinal photoreceptor synapses represents a specialization of the cytomatrix at the active zone (CAZ) present at conventional synapses. In mice deficient for the CAZ protein Bassoon, ribbons are not anchored to the presynaptic membrane but float freely in the cytoplasm. Exploiting this phenotype, we dissected the molecular structure of the photoreceptor ribbon complex. Identifiable CAZ proteins segregate into two compartments at the ribbon: a ribbon-associated compartment including Piccolo, RIBEYE, CtBP1/BARS, RIM1, and the motor protein KIF3A, and an active zone compartment including RIM2, Munc13-1, a Ca2+ channel alpha1 subunit, and ERC2/CAST1. A direct interaction between the ribbon-specific protein RIBEYE and Bassoon seems to link the two compartments and is responsible for the physical integrity of the photoreceptor ribbon complex. Finally, we found the RIBEYE homologue CtBP1 at ribbon and conventional synapses, suggesting a novel role for the CtBP/BARS family in the molecular assembly and function of central nervous system synapses.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Células Fotorreceptoras/metabolismo , Sinapses/metabolismo , Oxirredutases do Álcool , Animais , Proteínas Correpressoras , Imunofluorescência , Imuno-Histoquímica , Camundongos
16.
Elife ; 92020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32329716

RESUMO

We examined the feedback between the major protein degradation pathway, the ubiquitin-proteasome system (UPS), and protein synthesis in rat and mouse neurons. When protein degradation was inhibited, we observed a coordinate dramatic reduction in nascent protein synthesis in neuronal cell bodies and dendrites. The mechanism for translation inhibition involved the phosphorylation of eIF2α, surprisingly mediated by eIF2α kinase 1, or heme-regulated kinase inhibitor (HRI). Under basal conditions, neuronal expression of HRI is barely detectable. Following proteasome inhibition, HRI protein levels increase owing to stabilization of HRI and enhanced translation, likely via the increased availability of tRNAs for its rare codons. Once expressed, HRI is constitutively active in neurons because endogenous heme levels are so low; HRI activity results in eIF2α phosphorylation and the resulting inhibition of translation. These data demonstrate a novel role for neuronal HRI that senses and responds to compromised function of the proteasome to restore proteostasis.


Assuntos
Citoplasma/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase/fisiologia , eIF-2 Quinase/metabolismo , Animais , Antineoplásicos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Heme/metabolismo , Camundongos , Fosforilação , Ratos
17.
Nat Commun ; 11(1): 4990, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020478

RESUMO

Neurons are highly compartmentalized cells with tightly controlled subcellular protein organization. While brain transcriptome, connectome and global proteome maps are being generated, system-wide analysis of temporal protein dynamics at the subcellular level are currently lacking. Here, we perform a temporally-resolved surfaceome analysis of primary neuron cultures and reveal dynamic surface protein clusters that reflect the functional requirements during distinct stages of neuronal development. Direct comparison of surface and total protein pools during development and homeostatic synaptic scaling demonstrates system-wide proteostasis-independent remodeling of the neuronal surface, illustrating widespread regulation on the level of surface trafficking. Finally, quantitative analysis of the neuronal surface during chemical long-term potentiation (cLTP) reveals fast externalization of diverse classes of surface proteins beyond the AMPA receptor, providing avenues to investigate the requirement of exocytosis for LTP. Our resource (neurosurfaceome.ethz.ch) highlights the importance of subcellular resolution for systems-level understanding of cellular processes.


Assuntos
Proteínas de Membrana/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Homeostase , Potenciação de Longa Duração , Mapas de Interação de Proteínas , Transporte Proteico , Proteostase , Ratos
18.
Nat Commun ; 10(1): 486, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700723

RESUMO

Drebrin (DBN) regulates cytoskeletal functions during neuronal development, and is thought to contribute to structural and functional synaptic changes associated with aging and Alzheimer's disease. Here we show that DBN coordinates stress signalling with cytoskeletal dynamics, via a mechanism involving kinase ataxia-telangiectasia mutated (ATM). An excess of reactive oxygen species (ROS) stimulates ATM-dependent phosphorylation of DBN at serine-647, which enhances protein stability and accounts for improved stress resilience in dendritic spines. We generated a humanized DBN Caenorhabditis elegans model and show that a phospho-DBN mutant disrupts the protective ATM effect on lifespan under sustained oxidative stress. Our data indicate a master regulatory function of ATM-DBN in integrating cytosolic stress-induced signalling with the dynamics of actin remodelling to provide protection from synapse dysfunction and ROS-triggered reduced lifespan. They further suggest that DBN protein abundance governs actin filament stability to contribute to the consequences of oxidative stress in physiological and pathological conditions.


Assuntos
Actinas/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Estresse Oxidativo , Actinas/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Motivos de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Caenorhabditis elegans , Células Cultivadas , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , Fosforilação , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
19.
Epigenetics Chromatin ; 12(1): 63, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601272

RESUMO

BACKGROUND: MeCP2-a chromatin-binding protein associated with Rett syndrome-has two main isoforms, MeCP2-E1 and MeCP2-E2, differing in a few N-terminal amino acid residues. Previous studies have shown brain region-specific expression of these isoforms which, in addition to their different cellular localization and differential expression during brain development, suggest that they may also have non-overlapping molecular mechanisms. However, differential functions of MeCP2-E1 and E2 remain largely unexplored. RESULTS: Here, we show that the N-terminal domains (NTD) of MeCP2-E1 and E2 modulate the ability of the methyl-binding domain (MBD) to interact with DNA as well as influencing the turn-over rates, binding dynamics, response to neuronal depolarization, and circadian oscillations of the two isoforms. Our proteomics data indicate that both isoforms exhibit unique interacting protein partners. Moreover, genome-wide analysis using ChIP-seq provide evidence for a shared as well as a specific regulation of different sets of genes. CONCLUSIONS: Our study supports the idea that Rett syndrome might arise from simultaneous impairment of cellular processes involving non-overlapping functions of MECP2 isoforms. For instance, MeCP2-E1 mutations might impact stimuli-dependent chromatin regulation, while MeCP2-E2 mutations could result in aberrant ribosomal expression. Overall, our findings provide insight into the functional complexity of MeCP2 by dissecting differential aspects of its two isoforms.


Assuntos
DNA/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Ritmo Circadiano/genética , Humanos , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Síndrome de Rett/genética , Síndrome de Rett/patologia
20.
Neuron ; 37(5): 775-86, 2003 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-12628168

RESUMO

The photoreceptor ribbon synapse is a highly specialized glutamatergic synapse designed for the continuous flow of synaptic vesicles to the neurotransmitter release site. The molecular mechanisms underlying ribbon synapse formation are poorly understood. We have investigated the role of the presynaptic cytomatrix protein Bassoon, a major component of the photoreceptor ribbon, in a mouse retina deficient of functional Bassoon protein. Photoreceptor ribbons lacking Bassoon are not anchored to the presynaptic active zones. This results in an impaired photoreceptor synaptic transmission, an abnormal dendritic branching of neurons postsynaptic to photoreceptors, and the formation of ectopic synapses. These findings suggest a critical role of Bassoon in the formation and the function of photoreceptor ribbon synapses of the mammalian retina.


Assuntos
Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Estimulação Luminosa/métodos , Células Fotorreceptoras de Vertebrados/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Retina/metabolismo , Retina/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA