Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139140

RESUMO

Previously developed whole-cell vaccines against Bordetella pertussis, the causative agent of whooping cough, appeared to be too reactogenic due to their endotoxin content. Reduction in endotoxicity can generally be achieved through structural modifications in the lipid A moiety of lipopolysaccharides (LPS). In this study, we found that dephosphorylation of lipid A in B. pertussis through the heterologous production of the phosphatase LpxE from Francisella novicida did, unexpectedly, not affect Toll-like receptor 4 (TLR4)-stimulating activity. We then focused on the inner core of LPS, whose synthesis has so far not been studied in B. pertussis. The kdtA and kdkA genes, responsible for the incorporation of a single 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue in the inner core and its phosphorylation, respectively, appeared to be essential. However, the Kdo-bound phosphate could be replaced by a second Kdo after the heterologous production of Escherichia coli kdtA. This structural change in the inner core affected outer-core and lipid A structures and also bacterial physiology, as reflected in cell filamentation and a switch in virulence phase. Furthermore, the eptB gene responsible for the non-stoichiometric substitution of Kdo-bound phosphate with phosphoethanolamine was identified and inactivated. Interestingly, the constructed inner-core modifications affected TLR4-stimulating activity. Whereas endotoxicity studies generally focus on the lipid A moiety, our data demonstrate that structural changes in the inner core can also affect TLR4-stimulating activity.


Assuntos
Bordetella pertussis , Lipopolissacarídeos , Receptor 4 Toll-Like , Humanos , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Divisão Celular , Endotoxinas/metabolismo , Escherichia coli/metabolismo , Lipídeo A/metabolismo , Lipopolissacarídeos/genética , Lipopolissacarídeos/metabolismo , Mutação , Fosfatos/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Coqueluche
2.
Vet Res ; 53(1): 91, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371221

RESUMO

Streptococcus suis is a zoonotic agent that causes sepsis and meningitis in pigs and humans. S. suis infections are responsible for large economic losses in pig production. The lack of effective vaccines to prevent the disease has promoted the extensive use of antibiotics worldwide. This has been followed by the emergence of resistance against different classes of antibiotics. The rates of resistance to tetracyclines, lincosamides, and macrolides are extremely high, and resistance has spread worldwide. The genetic origin of S. suis resistance is multiple and includes the production of target-modifying and antibiotic-inactivating enzymes and mutations in antibiotic targets. S. suis genomes contain traits of horizontal gene transfer. Many mobile genetic elements carry a variety of genes that confer resistance to antibiotics as well as genes for autonomous DNA transfer and, thus, S. suis can rapidly acquire multiresistance. In addition, S. suis forms microcolonies on host tissues, which are associations of microorganisms that generate tolerance to antibiotics through a variety of mechanisms and favor the exchange of genetic material. Thus, alternatives to currently used antibiotics are highly demanded. A deep understanding of the mechanisms by which S. suis becomes resistant or tolerant to antibiotics may help to develop novel molecules or combinations of antimicrobials to fight these infections. Meanwhile, phage therapy and vaccination are promising alternative strategies, which could alleviate disease pressure and, thereby, antibiotic use.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Humanos , Suínos , Animais , Streptococcus suis/genética , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/veterinária , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Macrolídeos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/prevenção & controle
3.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887374

RESUMO

The Gram-negative bacterium Bordetella pertussis is the causative agent of a respiratory infection known as whooping cough. Previously developed whole-cell pertussis vaccines were effective, but appeared to be too reactogenic mainly due to the presence of lipopolysaccharide (LPS, also known as endotoxin) in the outer membrane (OM). Here, we investigated the possibility of reducing endotoxicity by modulating the LPS levels. The promoter of the lpxC gene, which encodes the first committed enzyme in LPS biosynthesis, was replaced by an isopropyl ß-D-1-thiogalactopyranoside (IPTG)-inducible promoter. The IPTG was essential for growth, even when the construct was moved into a strain that should allow for the replacement of LPS in the outer leaflet of the OM with phospholipids by defective phospholipid transporter Mla and OM phospholipase A. LpxC depletion in the absence of IPTG resulted in morphological changes of the cells and in overproduction of outer-membrane vesicles (OMVs). The reduced amounts of LPS in whole-cell preparations and in isolated OMVs of LpxC-depleted cells resulted in lower activation of Toll-like receptor 4 in HEK-Blue reporter cells. We suggest that, besides lipid A engineering, also a reduction in LPS synthesis is an attractive strategy for the production of either whole-cell- or OMV-based vaccines, with reduced reactogenicity for B. pertussis and other Gram-negative bacteria.


Assuntos
Bordetella pertussis , Coqueluche , Bordetella pertussis/genética , Endotoxinas , Bactérias Gram-Negativas/metabolismo , Humanos , Isopropiltiogalactosídeo , Lipopolissacarídeos/metabolismo , Coqueluche/prevenção & controle
4.
J Biol Chem ; 294(20): 7982-7989, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30926608

RESUMO

Lipopolysaccharides are anchored to the outer membrane of Gram-negative bacteria by a hydrophobic moiety known as lipid A, which potently activates the host innate immune response. Lipid A of Bordetella pertussis, the causative agent of whooping cough, displays unusual structural asymmetry with respect to the length of the acyl chains at the 3 and 3' positions, which are 3OH-C10 and 3OH-C14 chains, respectively. Both chains are attached by the acyltransferase LpxA, the first enzyme in the lipid A biosynthesis pathway, which, in B. pertussis, has limited chain length specificity. However, this only partially explains the strict asymmetry of lipid A. In attempts to modulate the endotoxicity of B. pertussis lipid A, here we expressed the gene encoding LpxA from Neisseria meningitidis, which specifically attaches 3OH-C12 chains, in B. pertussis This expression was lethal, suggesting that one of the downstream enzymes in the lipid A biosynthesis pathway in B. pertussis cannot handle precursors with a 3OH-C12 chain. We considered that the UDP-diacylglucosamine pyrophosphohydrolase LpxH could be responsible for this defect as well as for the asymmetry of B. pertussis lipid A. Expression of meningococcal LpxH in B. pertussis indeed resulted in new symmetric lipid A species with 3OH-C10 or 3OH-C14 chains at both the 3 and 3' positions, as revealed by MS analysis. Furthermore, co-expression of meningococcal lpxH and lpxA resulted in viable cells that incorporated 3OH-C12 chains in B. pertussis lipid A. We conclude that the asymmetry of B. pertussis lipid A is determined by the acyl chain length specificity of LpxH.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Bordetella pertussis/enzimologia , Lipídeo A/biossíntese , Aciltransferases/química , Aciltransferases/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bordetella pertussis/genética , Células HEK293 , Humanos , Lipídeo A/química , Lipídeo A/genética , Camundongos , Neisseria meningitidis/enzimologia , Neisseria meningitidis/genética , Especificidade por Substrato/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-27799202

RESUMO

Although AmpC ß-lactamases can barely degrade carbapenems, if at all, they can sequester them and prevent them from reaching their targets. Thus, carbapenem resistance in Escherichia coli and other Enterobacteriaceae can result from AmpC production and simultaneous reduction of antibiotic influx into the periplasm by mutations in the porin genes. Here we investigated the route and genetic mechanisms of acquisition of carbapenem resistance in a clinical E. coli isolate carrying blaCMY-2 on a plasmid by selecting for mutants that are resistant to increasing concentrations of meropenem. In the first step, the expression of OmpC, the only porin produced in the strain under laboratory conditions, was lost, leading to reduced susceptibility to meropenem. In the second step, the expression of the CMY-2 ß-lactamase was upregulated, leading to resistance to meropenem. The loss of OmpC was due to the insertion of an IS1 element into the ompC gene or to frameshift mutations and premature stop codons in this gene. The blaCMY-2 gene was found to be located on an IncIγ plasmid, and overproduction of the CMY-2 enzyme resulted from an increased plasmid copy number due to a nucleotide substitution in the inc gene. The clinical relevance of these genetic mechanisms became evident from the analysis of previously isolated carbapenem-resistant clinical isolates, which appeared to carry similar mutations.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Escherichia coli/efeitos dos fármacos , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Meropeném , Testes de Sensibilidade Microbiana , Mutação/genética , Plasmídeos/genética , Porinas/genética , Porinas/metabolismo , Tienamicinas/farmacologia , beta-Lactamases/genética
6.
PLoS Pathog ; 11(6): e1004946, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26083346

RESUMO

Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to "ER stress" and activation of the "unfolded protein response" (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host.


Assuntos
Células Epiteliais/metabolismo , Proteína Fosfatase 1/metabolismo , Infecções por Pseudomonas/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Fatores de Virulência/metabolismo , Western Blotting , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Biol Chem ; 289(22): 15602-10, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24755216

RESUMO

GNA2091 of Neisseria meningitidis is a lipoprotein of unknown function that is included in the novel 4CMenB vaccine. Here, we investigated the biological function and the subcellular localization of the protein. We demonstrate that GNA2091 functions in the assembly of outer membrane proteins (OMPs) because its absence resulted in the accumulation of misassembled OMPs. Cell fractionation and protease accessibility experiments showed that the protein is localized at the periplasmic side of the outer membrane. Pulldown experiments revealed that it is not stably associated with the ß-barrel assembly machinery, the previously identified complex for OMP assembly. Thus, GNA2091 constitutes a novel outer membrane-based lipoprotein required for OMP assembly. Furthermore, its location at the inner side of the outer membrane indicates that protective immunity elicited by this antigen cannot be due to bactericidal or opsonic activity of antibodies.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Vacinas Bacterianas/metabolismo , Neisseria meningitidis Sorogrupo B/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Sequência Conservada , Deleção de Genes , Lipoproteínas/genética , Lipoproteínas/metabolismo , Dados de Sequência Molecular , Mutagênese , Neisseria meningitidis Sorogrupo B/genética , Fenótipo , Porinas/metabolismo , Estrutura Terciária de Proteína
8.
BMC Genomics ; 16: 539, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198432

RESUMO

BACKGROUND: Plant growth-promoting rhizobacteria (PGPR) can protect plants against pathogenic microbes through a diversity of mechanisms including competition for nutrients, production of antibiotics, and stimulation of the host immune system, a phenomenon called induced systemic resistance (ISR). In the past 30 years, the Pseudomonas spp. PGPR strains WCS358, WCS374 and WCS417 of the Willie Commelin Scholten (WCS) collection have been studied in detail in pioneering papers on the molecular basis of PGPR-mediated ISR and mechanisms of biological control of soil-borne pathogens via siderophore-mediated competition for iron. RESULTS: The genomes of the model WCS PGPR strains were sequenced and analyzed to unearth genetic cues related to biological questions that surfaced during the past 30 years of functional studies on these plant-beneficial microbes. Whole genome comparisons revealed important novel insights into iron acquisition strategies with consequences for both bacterial ecology and plant protection, specifics of bacterial determinants involved in plant-PGPR recognition, and diversity of protein secretion systems involved in microbe-microbe and microbe-plant communication. Furthermore, multi-locus sequence alignment and whole genome comparison revealed the taxonomic position of the WCS model strains within the Pseudomonas genus. Despite the enormous diversity of Pseudomonas spp. in soils, several plant-associated Pseudomonas spp. strains that have been isolated from different hosts at different geographic regions appear to be nearly isogenic to WCS358, WCS374, or WCS417. Interestingly, all these WCS look-a-likes have been selected because of their plant protective or plant growth-promoting properties. CONCLUSIONS: The genome sequences of the model WCS strains revealed that they can be considered representatives of universally-present plant-beneficial Pseudomonas spp. With their well-characterized functions in the promotion of plant growth and health, the fully sequenced genomes of the WCS strains provide a genetic framework that allows for detailed analysis of the biological mechanisms of the plant-beneficial traits of these PGPR. Considering the increasing focus on the role of the root microbiome in plant health, functional genomics of the WCS strains will enhance our understanding of the diversity of functions of the root microbiome.


Assuntos
Raízes de Plantas/microbiologia , Pseudomonas/genética , Microbiologia do Solo , Microbiota/genética , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Pseudomonas/crescimento & desenvolvimento , Sideróforos/genética
9.
Environ Microbiol ; 17(4): 1321-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25059714

RESUMO

Autotransporters (ATs) are proteins secreted by Gram-negative bacteria that often play a role in virulence. Eight different ATs have been identified in Neisseria meningitidis, but only six of them have been characterized. AutA is one of the remaining ATs. Its expression remains controversial. Here, we show that the autA gene is present in many neisserial species, but its expression is often disrupted by various genetic features; however, it is expressed in certain strains of N. meningitidis. By sequencing the autA gene in large panels of disease isolates and Western blot analysis, we demonstrated that AutA expression is prone to phase variation at AAGC nucleotide repeats located within the DNA encoding the signal sequence. AutA is not secreted into the extracellular medium, but remains associated with the bacterial cell surface. We further demonstrate that AutA expression induces autoaggregation in a process that, dependent on the particular strain, may require extracellular DNA (eDNA). This property influences the organization of bacterial communities like lattices and biofilms. In vitro assays evidenced that AutA is a self-associating AT that binds DNA. We suggest that AutA-mediated autoaggregation might be particularly important for colonization and persistence of the pathogen in the nasopharynx of the host.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Proteínas de Transporte/metabolismo , Meningite Meningocócica/microbiologia , Neisseria meningitidis/fisiologia , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Neisseria meningitidis/genética , Transporte Proteico
10.
PLoS Pathog ; 9(10): e1003733, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204275

RESUMO

The outer membrane of Gram-negative bacteria functions as a permeability barrier that protects these bacteria against harmful compounds in the environment. Most nutrients pass the outer membrane by passive diffusion via pore-forming proteins known as porins. However, diffusion can only satisfy the growth requirements if the extracellular concentration of the nutrients is high. In the vertebrate host, the sequestration of essential nutrient metals is an important defense mechanism that limits the growth of invading pathogens, a process known as "nutritional immunity." The acquisition of scarce nutrients from the environment is mediated by receptors in the outer membrane in an energy-requiring process. Most characterized receptors are involved in the acquisition of iron. In this study, we characterized a hitherto unknown receptor from Neisseria meningitidis, a causative agent of sepsis and meningitis. Expression of this receptor, designated CbpA, is induced when the bacteria are grown under zinc limitation. We demonstrate that CbpA functions as a receptor for calprotectin, a protein that is massively produced by neutrophils and other cells and that has been shown to limit bacterial growth by chelating Zn²âº and Mn²âº ions. Expression of CbpA enables N. meningitidis to survive and propagate in the presence of calprotectin and to use calprotectin as a zinc source. Besides CbpA, also the TonB protein, which couples energy of the proton gradient across the inner membrane to receptor-mediated transport across the outer membrane, is required for the process. CbpA was found to be expressed in all N. meningitidis strains examined, consistent with a vital role for the protein when the bacteria reside in the host. Together, our results demonstrate that N. meningitidis is able to subvert an important defense mechanism of the human host and to utilize calprotectin to promote its growth.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Evasão da Resposta Imune , Neisseria meningitidis/imunologia , Zinco/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Transporte de Íons/genética , Transporte de Íons/imunologia , Ferro/imunologia , Ferro/metabolismo , Complexo Antígeno L1 Leucocitário/imunologia , Complexo Antígeno L1 Leucocitário/metabolismo , Manganês/imunologia , Manganês/metabolismo , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Zinco/metabolismo
11.
BMC Microbiol ; 15: 156, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26242409

RESUMO

BACKGROUND: Neisseria meningitidis is an inhabitant of the mucosal surfaces of the human nasopharynx. We recently demonstrated that the secreted meningococcal Two-partner secretion protein A (TpsA) is involved in interbacterial competition. The C-terminal end of the large TpsA protein contains a small toxic domain that inhibits the growth of target bacteria. The producing cells are protected from this toxic activity by a small immunity protein that is encoded by the gene immediately downstream of the tpsA gene. Further downstream on the chromosome, a repertoire of toxic modules, designated tpsC cassettes, is encoded that could replace the toxic module of TpsA by recombination. Each tpsC cassette is associated with a gene encoding a cognate immunity protein. RESULTS: Blast searchers using the toxic domains of TpsA and TpsC proteins as queries identified homologies with the C-terminal part of neisserial MafB proteins, which, for the rest, showed no sequence similarity to TpsA proteins. On the chromosome, mafB genes are part of genomic islands, which include cassettes for additional toxic modules as well as genes putatively encoding immunity proteins. We demonstrate that a MafB protein of strain B16B6 inhibits the growth of a strain that does not produce the corresponding immunity protein. Assays in E. coli confirmed that the C-terminal region of MafB is responsible for toxicity, which is inhibited by the cognate immunity protein. Pull-down assays revealed direct interaction between MafB toxic domains and the cognate immunity proteins. CONCLUSIONS: The meningococcal MafB proteins are novel toxic proteins involved in interbacterial competition.


Assuntos
Bacteriocinas/metabolismo , Fator de Transcrição MafB/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Neisseria meningitidis/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
12.
Proc Natl Acad Sci U S A ; 109(13): 4863-8, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22331896

RESUMO

Decrypting the structure, function, and molecular interactions of complex molecular machines in their cellular context and at atomic resolution is of prime importance for understanding fundamental physiological processes. Nuclear magnetic resonance is a well-established imaging method that can visualize cellular entities at the micrometer scale and can be used to obtain 3D atomic structures under in vitro conditions. Here, we introduce a solid-state NMR approach that provides atomic level insights into cell-associated molecular components. By combining dedicated protein production and labeling schemes with tailored solid-state NMR pulse methods, we obtained structural information of a recombinant integral membrane protein and the major endogenous molecular components in a bacterial environment. Our approach permits studying entire cellular compartments as well as cell-associated proteins at the same time and at atomic resolution.


Assuntos
Escherichia coli/citologia , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Dados de Sequência Molecular , Peptidoglicano/química , Peptidoglicano/metabolismo , Conformação Proteica , Proteolipídeos/química , Proteolipídeos/metabolismo
13.
J Bacteriol ; 196(4): 780-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24296673

RESUMO

Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria and is responsible for the barrier function of this membrane. A ght mutant of Neisseria meningitidis that showed increased sensitivity to hydrophobic toxic compounds, suggesting a breach in this permeability barrier, was previously described. Here, we assessed whether this phenotype was possibly caused by a defect in LPS transport or synthesis. The total amount of LPS appeared to be drastically reduced in a ght mutant, but the residual LPS was still detected at the cell surface, suggesting that LPS transport was not impaired. The ght mutant was rapidly overgrown by pseudorevertants that produced normal levels of LPS. Genetic analysis of these pseudorevertants revealed that the lpxC gene, which encodes a key enzyme in LPS synthesis, was fused to the promoter of the upstream-located pilE gene, resulting in severe lpxC overexpression. Analysis of phoA and lacZ gene fusions indicated that Ght is an inner membrane protein with an N-terminal membrane anchor and its bulk located in the cytoplasm, where it could potentially interact with LpxC. Cell fractionation experiments indeed indicated that Ght tethers LpxC to the membrane. We suggest that Ght regulates LPS biosynthesis by affecting the activity of LpxC. Possibly, this mechanism acts in the previously observed feedback inhibition of LPS synthesis that occurs when LPS transport is hampered.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Lipopolissacarídeos/biossíntese , Proteínas de Membrana/metabolismo , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Proteínas de Bactérias/genética , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Neisseria meningitidis/crescimento & desenvolvimento , Ligação Proteica , Supressão Genética
14.
J Biol Chem ; 288(2): 1214-25, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23188826

RESUMO

The type II secretion system is a multiprotein assembly spanning the inner and outer membranes in Gram-negative bacteria. It is found in almost all pathogenic bacteria where it contributes to virulence, host tissue colonization, and infection. The exoproteins are secreted across the outer membrane via a large translocation channel, the secretin, which typically adopts a dodecameric structure. These secretin channels have large periplasmic N-terminal domains that reach out into the periplasm for communication with the inner membrane platform and with a pseudopilus structure that spans the periplasm. Here we report the crystal structure of the N-terminal periplasmic domain of the secretin XcpQ from Pseudomonas aeruginosa, revealing a two-lobe dimeric assembly featuring parallel subunits engaging in well defined interactions at the tips of each lobe. We have employed structure-based engineering of disulfide bridges and native mass spectrometry to show that the periplasmic domain of XcpQ dimerizes in a concentration-dependent manner. Validation of these insights in the context of cellular full-length XcpQ and further evaluation of the functionality of disulfide-linked XcpQ establishes that the basic oligomerization unit of XcpQ is a dimer. This is consistent with the notion that the dodecameric secretin assembles as a hexamer of dimers to ensure correct projection of the N-terminal domains into the periplasm. Therefore, our studies provide a key conceptual advancement in understanding the assembly principles and dynamic function of type II secretion system secretins and challenge recent studies reporting monomers as the basic subunit of the secretin oligomer.


Assuntos
Proteínas de Bactérias/metabolismo , Periplasma/metabolismo , Pseudomonas aeruginosa/metabolismo , Secretina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
15.
Mol Microbiol ; 87(2): 254-68, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23163582

RESUMO

Neisseria meningitidis is a common and usually harmless inhabitant of the mucosa of the human nasopharynx, which, in rare cases, can cross the epithelial barrier and cause meningitis and sepsis. Biofilm formation favours the colonization of the host and the subsequent carrier state. Two different strategies of biofilm formation, either dependent or independent on extracellular DNA (eDNA), have been described for meningococcal strains. Here, we demonstrate that the autotransporter protease NalP, the expression of which is phase variable, affects eDNA-dependent biofilm formation in N. meningitidis. The effect of NalP was found in biofilm formation under static and flow conditions and was dependent on its protease activity. Cleavage of the heparin-binding antigen NhbA and the α-peptide of IgA protease, resulting in the release of positively charged polypeptides from the cell surface, was responsible for the reduction in biofilm formation when NalP is expressed. Both NhbA and the α-peptide of IgA protease were shown to bind DNA. We conclude that NhbA and the α-peptide of IgA protease are implicated in biofilm formation by binding eDNA and that NalP is an important regulator of this process through the proteolysis of these surface-exposed proteins.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neisseria meningitidis/fisiologia , Serina Endopeptidases/metabolismo , DNA Bacteriano/metabolismo , Neisseria meningitidis/metabolismo
16.
Microbiology (Reading) ; 160(Pt 11): 2421-2431, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25161279

RESUMO

As with all classical monomeric autotransporters, IgA protease of Neisseria meningitidis is a modular protein consisting of an N-terminal signal sequence, a passenger domain and a C-terminal translocator domain (TD) that assists in the secretion of the passenger domain across the outer membrane. The passenger of IgA protease consists of three separate domains: the protease domain, the γ-peptide and the α-peptide that contains nuclear localization signals (NLSs). The protease domain is released into the extracellular milieu either via autocatalytic processing or via cleavage by another autotransporter, NalP, expression of which is phase-variable. NalP-mediated cleavage results in the release of a passenger that includes the α- and γ-peptides. Here, we studied the fate of the α-peptide when NalP was not expressed and observed strain-dependent differences. In meningococcal strains where the α-peptide contained a single NLS, the α-peptide remained covalently attached to the TD and was detected at the cell surface. In other strains, the α-peptide contained four NLSs and was separated from the TD by an IgA protease autoproteolytic cleavage site. In many of those cases, the α-peptide was found non-covalently associated with the cells as a separate polypeptide. The cell surface association of the α-peptides may be relevant physiologically. We report a novel function for the α-peptide, i.e. the binding of heparin - an immune-modulatory molecule that in the host is found in the extracellular matrix and connected to cell surfaces.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Neisseria meningitidis/enzimologia , Serina Endopeptidases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/genética , Heparina/metabolismo , Humanos , Meningite Meningocócica/metabolismo , Meningite Meningocócica/microbiologia , Dados de Sequência Molecular , Neisseria meningitidis/química , Neisseria meningitidis/genética , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Serina Endopeptidases/química , Serina Endopeptidases/genética
17.
Infect Immun ; 81(6): 1915-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23509142

RESUMO

Neisseria meningitidis serogroup B (MenB) is a major cause of bacterial sepsis and meningitis, with the highest disease burden in young children. Available vaccines are based on outer membrane vesicles (OMVs) obtained from wild-type strains. However, particularly in toddlers and infants, they confer protection mostly against strains expressing the homologous protein PorA, a major and variable outer membrane protein. In the quest for alternative vaccine antigens able to provide broad MenB strain coverage in younger populations, but potentially also across all age groups, ZnuD, a protein expressed under zinc-limiting conditions, may be considered a promising candidate. Here, we have investigated the potential value of ZnuD and show that it is a conserved antigen expressed by all MenB strains tested except for some strains of clonal complex ST-8. In mice and guinea pigs immunized with ZnuD-expressing OMVs, antibodies were elicited that were able to trigger complement-mediated killing of all the MenB strains and serogroup A, C, and Y strains tested when grown under conditions of zinc limitation. ZnuD is also expressed during infection, since anti-ZnuD antibodies were detected in sera from patients. In conclusion, we confirm the potential of ZnuD-bearing OMVs as a component of an effective MenB vaccine.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/imunologia , Proteínas de Transporte de Cátions/metabolismo , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/metabolismo , Adolescente , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Criança , Pré-Escolar , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Cobaias , Humanos , Lactente , Camundongos , Modelos Moleculares , Neisseria meningitidis/genética , Neisseria meningitidis/imunologia , Filogenia , Conformação Proteica , Ensaios de Anticorpos Bactericidas Séricos , Adulto Jovem , Zinco/metabolismo
18.
BMC Genomics ; 14: 622, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-24034852

RESUMO

BACKGROUND: Two-partner secretion systems in Gram-negative bacteria consist of an outer membrane protein TpsB that mediates the secretion of a cognate TpsA protein into the extracellular milieu. TpsA proteins have diverse, often virulence-related functions, and some of them inhibit the growth of related bacteria. In Neisseria meningitidis, several functions have been attributed to the TpsA proteins. Downstream of the tpsB and tpsA genes, several shorter tpsA-related gene cassettes, called tpsC, are located interspersed with intervening open-reading frames (IORFs). It has been suggested that the tpsC cassettes may recombine with the tpsA gene as a mechanism of antigenic variation. Here, we investigated (i) whether TpsA of N. meningitidis also has growth-inhibitory properties, (ii) whether tpsC cassettes recombine with the tpsA gene, and (iii) what the consequences of such recombination events might be. RESULTS: We demonstrate that meningococcal TpsA has growth-inhibitory properties and that the IORF located immediately downstream of tpsA confers immunity to the producing strain. Although bioinformatics analysis suggests that recombination between tpsC cassettes and tpsA occurs, detailed analysis of the tpsA gene in a large collection of disease isolates of three clonal complexes revealed that the frequency is very low and cannot be a mechanism of antigenic variation. However, recombination affected growth inhibition. In vitro experiments revealed that recombination can be mediated through acquirement of tpsC cassettes from the environment and it identified the regions involved in the recombination. CONCLUSIONS: Meningococcal TpsA has growth-inhibitory properties. Recombination between tpsA and tpsC cassettes occurs in vivo but is rare and has consequences for growth inhibition. A recombination model is proposed and we propose that the main goal of recombination is the collection of new IORFs for protection against a variety of TpsA proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Sistemas de Secreção Bacterianos/genética , Neisseria meningitidis/crescimento & desenvolvimento , Neisseria meningitidis/genética , Recombinação Genética , DNA Bacteriano/genética , Fases de Leitura Aberta , Análise de Sequência de DNA
19.
Antimicrob Agents Chemother ; 57(8): 3941-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23733461

RESUMO

A liver transplant patient was admitted with cholangitis, for which meropenem therapy was started. Initial cultures showed a carbapenem-susceptible (CS) Escherichia coli strain, but during admission, a carbapenem-resistant (CR) E. coli strain was isolated. Analysis of the outer membrane protein profiles showed that both CS and CR E. coli lacked the porins OmpF and OmpC. Furthermore, PCR and sequence analysis revealed that both CS and CR E. coli possessed bla(CTX-M-15) and bla(OXA-1). The CR E. coli strain additionally harbored bla(CMY-2) and demonstrated a >15-fold increase in ß-lactamase activity against nitrocefin, but no hydrolysis of meropenem was detected. However, nitrocefin hydrolysis appeared strongly inhibited by meropenem. Furthermore, the CMY-2 enzyme demonstrated lower electrophoretic mobility after its incubation either in vitro or in vivo with meropenem, indicative of its covalent modification with meropenem. The presence of the acyl-enzyme complex was confirmed by mass spectrometry. By transformation of the CMY-2-encoding plasmid into various E. coli strains, it was established that both porin deficiency and high-level expression of the enzyme were needed to confer meropenem resistance. In conclusion, carbapenem resistance emerged by a combination of elevated ß-lactamase production and lack of porin expression. Due to the reduced outer membrane permeability, only small amounts of meropenem can enter the periplasm, where they are trapped but not degraded by the large amount of the ß-lactamase. This study, therefore, provides evidence that the mechanism of "trapping" by CMY-2 ß-lactamase plays a role in carbapenem resistance.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Permeabilidade da Membrana Celular , Escherichia coli/efeitos dos fármacos , Plasmídeos/metabolismo , Tienamicinas/uso terapêutico , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas da Membrana Bacteriana Externa/genética , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Humanos , Hidrólise , Meropeném , Testes de Sensibilidade Microbiana , Periplasma/efeitos dos fármacos , Plasmídeos/genética , Ligação Proteica , Tienamicinas/farmacologia , Adulto Jovem , beta-Lactamases/genética
20.
Environ Microbiol ; 15(10): 2658-71, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23530902

RESUMO

The genome of the Gram-negative bacterium Pseudomonas putida harbours a complete set of xcp genes for a type II protein secretion system (T2SS). This study shows that expression of these genes is induced under inorganic phosphate (Pi ) limitation and that the system enables the utilization of various organic phosphate sources. A phosphatase of the PhoX family, previously designated UxpB, was identified, which was produced under low Pi conditions and transported across the cell envelope in an Xcp-dependent manner demonstrating that the xcp genes encode an active T2SS. The signal sequence of UxpB contains a twin-arginine translocation (Tat) motif as well as a lipobox, and both processing by leader peptidase II and Tat dependency were experimentally confirmed. Two different tat gene clusters were detected in the P. putida genome, of which one, named tat-1, is located adjacent to the uxpB and xcp genes. Both Tat systems appeared to be capable of transporting the UxpB protein. However, expression of the tat-1 genes was strongly induced by low Pi levels, indicating a function of this system in survival during Pi starvation.


Assuntos
Sistemas de Secreção Bacterianos/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fosfatos/metabolismo , Transporte Proteico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA