Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902429

RESUMO

The downregulation of SPRED2, a negative regulator of the ERK1/2 pathway, was previously detected in human cancers; however, the biological consequence remains unknown. Here, we investigated the effects of SPRED2 loss on hepatocellular carcinoma (HCC) cell function. Human HCC cell lines, expressing various levels of SPRED2 and SPRED2 knockdown, increased ERK1/2 activation. SPRED2-knockout (KO)-HepG2 cells displayed an elongated spindle shape with increased cell migration/invasion and cadherin switching, with features of epithelial-mesenchymal transition (EMT). SPRED2-KO cells demonstrated a higher ability to form spheres and colonies, expressed higher levels of stemness markers and were more resistant to cisplatin. Interestingly, SPRED2-KO cells also expressed higher levels of the stem cell surface markers CD44 and CD90. When CD44+CD90+ and CD44-CD90- populations from WT cells were analyzed, a lower level of SPRED2 and higher levels of stem cell markers were detected in CD44+CD90+ cells. Further, endogenous SPRED2 expression decreased when WT cells were cultured in 3D, but was restored in 2D culture. Finally, the levels of SPRED2 in clinical HCC tissues were significantly lower than those in adjacent non-HCC tissues and were negatively associated with progression-free survival. Thus, the downregulation of SPRED2 in HCC promotes EMT and stemness through the activation of the ERK1/2 pathway, and leads to more malignant phenotypes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Células Hep G2 , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/genética
2.
Biochem Biophys Res Commun ; 634: 83-91, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36240653

RESUMO

Bladder cancer is an often widely disseminated and deadly cancer. To block the malignant outgrowth of bladder cancer, we must elucidate the molecular-level characteristics of not only bladder cancer cells but also their surrounding milieu. As part of this effort, we have long been studying extracellular S100A8/A9, which is elevated by the inflammation associated with certain cancers. Extracellularly enriched S100A8/A9 can hasten a shift to metastatic transition in multiple types of cancer cells. Intriguingly, high-level S100A8/A9 has been detected in the urine of bladder-cancer patients, and the level increases with the stage of malignancy. Nonetheless, S100A8/A9 has been investigated mainly as a potential biomarker of bladder cancers, and there have been no investigations of its role in bladder-cancer growth and metastasis. We herein report that extracellular S100A8/A9 induces upregulation of growth, migration and invasion in bladder cancer cells through its binding with cell-surface Toll-like receptor 4 (TLR4). Our molecular analysis revealed the TLR4 downstream signal that accelerates such cancer cell events. Tumor progression locus 2 (TPL2) was a key factor facilitating the aggressiveness of cancer cells. Upon binding of S100A8/A9 with TLR4, TPL2 activation was enhanced by an action with a TLR4 adaptor molecule, TIR domain-containing adaptor protein (TIRAP), which in turn led to activation of the mitogen-activated protein kinase (MAPK) cascade of TPL2. Finally, we showed that sustained inhibition of TLR4 in cancer cells effectively dampened cancer survival in vivo. Collectively, our results indicate that the S100A8/A9-TLR4-TPL2 axis influences the growth, survival, and invasive motility of bladder cancer cells.


Assuntos
Receptor 4 Toll-Like , Neoplasias da Bexiga Urinária , Humanos , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1 , Receptor 4 Toll-Like/metabolismo , Bexiga Urinária/metabolismo
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142212

RESUMO

The dissection of the complex multistep process of metastasis exposes vulnerabilities that could be exploited to prevent metastasis. To search for possible factors that favor metastatic outgrowth, we have been focusing on secretory S100A8/A9. A heterodimer complex of the S100A8 and S100A9 proteins, S100A8/A9 functions as a strong chemoattractant, growth factor, and immune suppressor, both promoting the cancer milieu at the cancer-onset site and cultivating remote, premetastatic cancer sites. We previously reported that melanoma cells show lung-tropic metastasis owing to the abundant expression of S100A8/A9 in the lung. In the present study, we addressed the question of why melanoma cells are not metastasized into the brain at significant levels in mice despite the marked induction of S100A8/A9 in the brain. We discovered the presence of plasma histidine-rich glycoprotein (HRG), a brain-metastasis suppression factor against S100A8/A9. Using S100A8/A9 as an affinity ligand, we searched for and purified the binding plasma proteins of S100A8/A9 and identified HRG as the major protein on mass spectrometric analysis. HRG prevents the binding of S100A8/A9 to the B16-BL6 melanoma cell surface via the formation of the S100A8/A9 complex. HRG also inhibited the S100A8/A9-induced migration and invasion of A375 melanoma cells. When we knocked down HRG in mice bearing skin melanoma, metastasis to both the brain and lungs was significantly enhanced. The clinical examination of plasma S100A8/A9 and HRG levels showed that lung cancer patients with brain metastasis had higher S100A8/A9 and lower HRG levels than nonmetastatic patients. These results suggest that the plasma protein HRG strongly protects the brain and lungs from the threat of melanoma metastasis.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neoplasias Pulmonares , Melanoma Experimental , Proteínas/metabolismo , Animais , Calgranulina A/sangue , Calgranulina A/genética , Calgranulina B/sangue , Fatores Quimiotáticos , Ligantes , Neoplasias Pulmonares/metabolismo , Camundongos
4.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884474

RESUMO

Interleukin (IL) 23 (p19/p40) plays a critical role in the pathogenesis of psoriasis and is upregulated in psoriasis skin lesions. In clinical practice, anti-IL-23Ap19 antibodies are highly effective against psoriasis. IL-39 (p19/ Epstein-Barr virus-induced (EBI) 3), a newly discovered cytokine in 2015, shares the p19 subunit with IL-23. Anti-IL-23Ap19 antibodies may bind to IL-39; also, the cytokine may contribute to the pathogenesis of psoriasis. To investigate IL23Ap19- and/or EBI3-including cytokines in psoriatic keratinocytes, we analyzed IL-23Ap19 and EBI3 expressions in psoriasis skin lesions, using immunohistochemistry and normal human epidermal keratinocytes (NHEKs) stimulated with inflammatory cytokines, using quantitative real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and liquid chromatography-electrospray tandem mass spectrometry (LC-Ms/Ms). Immunohistochemical analysis showed that IL-23Ap19 and EBI3 expressions were upregulated in the psoriasis skin lesions. In vitro, these expressions were synergistically induced by the triple combination of tumor necrosis factor (TNF)-α, IL-17A, and interferon (IFN)-γ, and suppressed by dexamethasone, vitamin D3, and acitretin. In ELISA and LC-Ms/Ms analyses, keratinocyte-derived IL-23Ap19 and EBI3, but not heterodimeric forms, were detected with humanized anti-IL-23Ap19 monoclonal antibodies, tildrakizumab, and anti-EBI3 antibodies, respectively. Psoriatic keratinocytes may express IL-23Ap19 and EBI3 proteins in a monomer or homopolymer, such as homodimer or homotrimer.


Assuntos
Subunidade p19 da Interleucina-23/metabolismo , Interleucinas/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Psoríase/imunologia , Regulação para Cima , Anticorpos Monoclonais Humanizados/farmacologia , Linhagem Celular , Cromatografia Líquida , Citocinas/genética , Citocinas/metabolismo , Humanos , Subunidade p19 da Interleucina-23/genética , Interleucinas/genética , Queratinócitos/imunologia , Antígenos de Histocompatibilidade Menor/genética , Psoríase/genética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Regulação para Cima/efeitos dos fármacos
5.
Mol Biol Rep ; 47(6): 4879-4883, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32383137

RESUMO

Metastasis is the major cause of treatment failure in cancer patients and of cancer-associated death so that therapeutic regulation of metastasis is very important subject for the cancer treatment. We have been reported that S100A8/A9, a heterodimer complex of S100A8 and S100A9, and its receptors play a crucial role in the lung tropic cancer metastasis, i.e., S100A8/A9 is actively secreted from the lung when cancer mass exists even at remote area from the lung and then functions to attract the distant cancer cells to the lung since cancer cells own the S100A8/A9 receptor(s) on their cell surface. Interestingly, one of the newly developed decoys, exMCAM-Fc, a Fc fusion protein with the extracellular region of melanoma cell adhesion molecule (MCAM), one of the S100A8/A9 receptors, that could prevent the interaction of S100A8/A9 with MCAM, efficiently suppressed the lung tropic cancer metastasis through exerting the several inhibitory effects on the S100A8/A9-mediated cancer cell events including enhanced mobility, invasion and attachment to the endothelial cells. However, it still remains to clarify if the decoy will reduce the number of circulating tumor cells (CTCs) that are defined as substantial cells in the context of organ tropic cancer metastasis. Here, we first show that exMCAM-Fc effectively reduces the number of CTCs in the blood flow of the melanoma bearing mice. The novel finding reinforces the suppressive role of exMCAM-Fc on the cancer metastasis. We therefore expect that exMCAM-Fc may greatly contribute to reduce treatment failure by the efficient blocking of the life threatening cancer metastasis.


Assuntos
Antígeno CD146/farmacologia , Melanoma/patologia , Células Neoplásicas Circulantes/efeitos dos fármacos , Animais , Antígeno CD146/metabolismo , Calgranulina A/efeitos dos fármacos , Calgranulina A/metabolismo , Calgranulina B/efeitos dos fármacos , Calgranulina B/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Cancer ; 145(2): 569-575, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30414170

RESUMO

The metastatic dissemination of cancer cells to remote areas of the body is the most problematic aspect in cancer patients. Among cancers, melanomas are notoriously difficult to treat due to their significantly high metastatic potential even during early stages. Hence, the establishment of advanced therapeutic approaches to regulate metastasis is required to overcome the melanoma disease. An accumulating mass of evidence has indicated a critical role of extracellular S100A8/A9 in melanoma distant metastasis. Lung S100A8/A9 is induced by melanoma cells from distant organs and it attracts these cells to its enriched lung environment since melanoma cells possess several receptors that sense the S100A8/A9 ligand. We hence aimed to develop a neutralizing antibody against S100A8/A9 that would efficiently block melanoma lung metastasis. Our protocol provided us with one prominent antibody, Ab45 that efficiently suppressed not only S100A8/A9-mediated melanoma mobility but also lung tropic melanoma metastasis in a mouse model. This prompted us to make chimeric Ab45, a chimera antibody consisting of mouse Ab45-Fab and human IgG2-Fc. Chimeric Ab45 also showed significant inhibition of the lung metastasis of melanoma. From these results, we have high hopes that the newly produced antibody will become a potential biological tool to block melanoma metastasis in future clinical settings.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Melanoma/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/farmacologia , Calgranulina A/imunologia , Calgranulina B/imunologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Camundongos , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Cancer ; 144(12): 3138-3145, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30365872

RESUMO

Within the "seed and soil" theory of organ tropic cancer metastasis is a growing compilation of evidence that S100A8/A9 functions as a soil signal that attracts cancer cells to certain organs, which prove beneficial to their growth. S100A8/A9-sensing receptors including Toll-like receptor 4 (TLR4), advanced glycation end products (RAGE), and also important receptors we recently succeeded in identifying (EMMPRIN, NPTNß, MCAM, and ALCAM) have the potential to become promising therapeutic targets. In our study, we prepared extracellular regions of these novel molecules and fused them to human IgG2-Fc to extend half-life expectancy, and we evaluated the anti-metastatic effects of the purified decoy proteins on metastatic cancer cells. The purified proteins markedly suppressed S100A8/A9-mediated lung tropic cancer metastasis. We hence expect that our novel biologics may become a prominent medicine to prevent cancer metastasis in clinical settings through cutting the linkage between "seed and soil".


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Melanoma Experimental/prevenção & controle , Melanoma Experimental/secundário , Proteínas Recombinantes de Fusão/farmacologia , Animais , Basigina/química , Basigina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/farmacologia , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunoglobulina G/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Domínios Proteicos , Receptor para Produtos Finais de Glicação Avançada/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
8.
Mol Carcinog ; 58(6): 980-995, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30720226

RESUMO

Compiling evidence indicates an unusual role of extracellular S100A8/A9 in cancer metastasis. S100A8/A9 secreted from either cancer cells or normal cells including epithelial and inflammatory cells stimulates cancer cells through S100A8/A9 sensor receptors in an autocrine or paracrine manner, leading to cancer cell metastatic progression. We previously reported a novel S100A8/A9 receptor, neuroplastin-ß (NPTNß), which plays a critical role in atopic dermatitis when it is highly activated in keratinocytes by an excess amount of extracellular S100A8/A9 in the inflammatory skin lesion. Interestingly, our expression profiling of NPTNß showed significantly high expression levels in lung cancer cell lines in a consistent manner. We hence aimed to determine the significance of NPTNß as an S100A8/A9 receptor in lung cancer. Our results showed that NPTNß has strong ability to induce cancer-related cellular events, including anchorage-independent growth, motility and invasiveness, in lung cancer cells in response to extracellular S100A8/A9, eventually leading to the expression of a cancer disseminative phenotype in lung tissue in vivo. Mechanistic investigation revealed that binding of S100A8/A9 to NPTNß mediates activation of NFIA and NFIB and following SPDEF transcription factors through orchestrated upstream signals from TRAF2 and RAS, which is linked to anchorage-independent growth, motility and invasiveness. Overall, our results indicate the importance of the S100A8/A9-NPTNß axis in lung cancer disseminative progression and reveal a pivotal role of its newly identified downstream signaling, TRAF2/RAS-NFIA/NFIB-SPDEF, in linking to the aggressive development of lung cancers.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/metabolismo , Regulação para Cima , Células A549 , Animais , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Fatores de Transcrição NFI/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Transdução de Sinais
9.
Nihon Rinsho ; 75(2): 323-328, 2017 02.
Artigo em Japonês | MEDLINE | ID: mdl-30562872

RESUMO

The rate of cancer incidence and mortality of Type 2 diabetes patients who were taking metformin seem to be decreased, comparing with those taking other drugs. We recently pro- vided compelling evidence showing that the effect might be mediated by immune system, thus, the reversion of exhausted tumor infiltrating CD8T lymphocytes (CD8TIL). Glycolysis is essential in CD8T cell function. However, the metabolism of CD8TIL is locked in a state of oxidative phosphorylation (OxPhos) dominant over glycolysis because of interaction between immune checkpoints and their ligands, and because of extremely low concentration of glu- cose in tumor microenvironment. Metformin increases the glycolysis efficiency, resulting in the conversion of CD8TIL to more active effector memory to fight against cancers.


Assuntos
Metformina/farmacologia , Neoplasias/metabolismo , Neoplasias/terapia , Humanos , Memória Imunológica/efeitos dos fármacos , Neoplasias/imunologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-38842658

RESUMO

Compiling evidence has indicated that S100A11 expression at high levels is closely associated with various cancer species. Consistent with the results reported elsewhere, we have also revealed that S100A11 is highly expressed in squamous cell carcinoma, mesothelioma, and pancreatic cancers and plays a crucial role in cancer progression when secreted into extracellular fluid. Those studies are all focused on the extracellular role of S100A11. However, most of S100A11 is still present within cancer cells, although the intracellular role of S100A11 in cancer cells has not been fully elucidated. Thus, we aimed to investigate S100A11 functions within cancer cells, primarily focusing on colorectal cancer cells, whose S100A11 is abundantly present in cells and still poorly studied cancer for the protein. Our efforts revealed that overexpression of S100A11 promotes proliferation and migration, and downregulation inversely dampens those cancer behaviors. To clarify how intracellular S100A11 aids cancer cell activation, we tried to identify S100A11 binding proteins, resulting in novel binding partners in the inner membrane, many of which are desmosome proteins. Our molecular approach defined that S100A11 regulates the expression level of DSG1, a component protein of desmosome, by which S100A11 activates the TCF pathway via promoting nuclear translocation of γ-catenin from the desmosome. The identified new pathway greatly helps to comprehend S100A11's nature in colorectal cancers and others.

11.
Front Oncol ; 14: 1371342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595825

RESUMO

Background: Our earlier research revealed that the secreted lysyl oxidase-like 4 (LOXL4) that is highly elevated in triple-negative breast cancer (TNBC) acts as a catalyst to lock annexin A2 on the cell membrane surface, which accelerates invasive outgrowth of the cancer through the binding of integrin-ß1 on the cell surface. However, whether this machinery is subject to the LOXL4-mediated intrusive regulation remains uncertain. Methods: Cell invasion was assessed using a transwell-based assay, protein-protein interactions by an immunoprecipitation-Western blotting technique and immunocytochemistry, and plasmin activity in the cell membrane by gelatin zymography. Results: We revealed that cell surface annexin A2 acts as a receptor of plasminogen via interaction with S100A10, a key cell surface annexin A2-binding factor, and S100A11. We found that the cell surface annexin A2/S100A11 complex leads to mature active plasmin from bound plasminogen, which actively stimulates gelatin digestion, followed by increased invasion. Conclusion: We have refined our understanding of the role of LOXL4 in TNBC cell invasion: namely, LOXL4 mediates the upregulation of annexin A2 at the cell surface, the upregulated annexin 2 binds S100A11 and S100A10, and the resulting annexin A2/S100A11 complex acts as a receptor of plasminogen, readily converting it into active-form plasmin and thereby enhancing invasion.

12.
Front Oncol ; 14: 1371307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863623

RESUMO

Background: Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-ß1 at the cancer plasma membrane. However, it has yet to be uncovered how the LOXL4-mediated abundance of integrin-ß1 hastens the invasive outgrowth of TNBC cells at the molecular level. Methods: LOXL4-overexpressing stable clones were established from MDA-MB-231 cells and subjected to molecular analyses, real-time qPCR and zymography to clarify their invasiveness, signal transduction, and matrix metalloprotease (MMP) activity, respectively. Results: Our results show that LOXL4 potently promotes the induction of matrix metalloprotease 9 (MMP9) via activation of nuclear factor-κB (NF-κB). Our molecular analysis revealed that TNF receptor-associated factor 4 (TRAF4) and TGF-ß activated kinase 1 (TAK1) were required for the activation of NF-κB through Iκß kinase kinase (IKKα/ß) phosphorylation. Conclusion: Our results demonstrate that the newly identified LOXL4-mediated axis, integrin-ß1-TRAF4-TAK1-IKKα/ß-Iκßα-NF-κB-MMP9, is crucial for TNBC cell invasiveness.

13.
Cell Signal ; 108: 110717, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37187216

RESUMO

Nicotinamide adenine dinucleotide (NAD)+-biosynthetic and consuming enzymes are involved in various intracellular events through the regulation of NAD+ metabolism. Recently, it has become clear that alterations in the expression of NAD+-biosynthetic and consuming enzymes contribute to the axonal stability of neurons. We explored soluble bioactive factor(s) that alter the expression of NAD+-metabolizing enzymes and found that cytokine interferon (IFN)-γ increased the expression of nicotinamide nucleotide adenylyltransferase 2 (NMNAT2), an NAD+-biosynthetic enzyme. IFN-γ activated signal transducers and activators of transcription 1 and 3 (STAT1/3) followed by c-Jun N-terminal kinase (JNK) suppression. As a result, STAT1/3 increased the expression of NMNAT2 at both mRNA and protein levels in a dose- and time-dependent manner and, at the same time, suppressed activation of sterile alpha and Toll/interleukin receptor motif-containing 1 (SARM1), an NAD+-consuming enzyme, and increased intracellular NAD+ levels. We examined the protective effect of STAT1/3 signaling against vincristine-mediated cell injury as a model of chemotherapy-induced peripheral neuropathy (CIPN), in which axonal degeneration is involved in disease progression. We found that IFN-γ-mediated STAT1/3 activation inhibited vincristine-induced downregulation of NMNAT2 and upregulation of SARM1 phosphorylation, resulting in modest suppression of subsequent neurite degradation and cell death. These results indicate that STAT1/3 signaling induces NMNAT2 expression while simultaneously suppressing SARM1 phosphorylation, and that both these actions contribute to suppression of axonal degeneration and cell death.


Assuntos
Axônios , NAD , NAD/metabolismo , Vincristina/metabolismo , Axônios/metabolismo , Neurônios/metabolismo , Morte Celular , Proteínas do Domínio Armadillo/metabolismo
14.
J Biochem ; 174(6): 533-548, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37725528

RESUMO

Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a NAD+ hydrolase that plays a key role in axonal degeneration and neuronal cell death. We reported that c-Jun N-terminal kinase (JNK) activates SARM1 through phosphorylation at Ser-548. The importance of SARM1 phosphorylation in the pathological process of Parkinson's disease (PD) has not been determined. We thus conducted the present study by using rotenone (an inducer of PD-like pathology) and neurons derived from induced pluripotent stem cells (iPSCs) from healthy donors and a patient with familial PD PARK2 (FPD2). The results showed that compared to the healthy neurons, FPD2 neurons were more vulnerable to rotenone-induced stress and had higher levels of SARM1 phosphorylation. Similar cellular events were obtained when we used PARK2-knockdown neurons derived from healthy donor iPSCs. These events in both types of PD-model neurons were suppressed in neurons treated with JNK inhibitors, Ca2+-signal inhibitors, or by a SARM1-knockdown procedure. The degenerative events were enhanced in neurons overexpressing wild-type SARM1 and conversely suppressed in neurons overexpressing the SARM1-S548A mutant. We also detected elevated SARM1 phosphorylation in the midbrain of PD-model mice. The results indicate that phosphorylated SARM1 plays an important role in the pathological process of rotenone-induced neurodegeneration.


Assuntos
Doença de Parkinson , Rotenona , Humanos , Animais , Camundongos , Rotenona/farmacologia , Rotenona/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Morte Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
15.
J Mol Med (Berl) ; 101(4): 431-447, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869893

RESUMO

The adenovirus-REIC/Dkk-3 expression vector (Ad-REIC) has been the focus of numerous clinical studies due to its potential for the quenching of cancers. The cancer-suppressing mechanisms of the REIC/DKK-3 gene depend on multiple pathways that exert both direct and indirect effects on cancers. The direct effect is triggered by REIC/Dkk-3-mediated ER stress that causes cancer-selective apoptosis, and the indirect effect can be classified in two ways: (i) induction, by Ad-REIC-mis-infected cancer-associated fibroblasts, of the production of IL-7, an important activator of T cells and NK cells, and (ii) promotion, by the secretory REIC/Dkk-3 protein, of dendritic cell polarization from monocytes. These unique features allow Ad-REIC to exert effective and selective cancer-preventative effects in the manner of an anticancer vaccine. However, the question of how the REIC/Dkk-3 protein leverages anticancer immunity has remained to be answered. We herein report a novel function of the extracellular REIC/Dkk-3-namely, regulation of an immune checkpoint via modulation of PD-L1 on the cancer-cell surface. First, we identified novel interactions of REIC/Dkk-3 with the membrane proteins C5aR, CXCR2, CXCR6, and CMTM6. These proteins all functioned to stabilize PD-L1 on the cell surface. Due to the dominant expression of CMTM6 among the proteins in cancer cells, we next focused on CMTM6 and observed that REIC/Dkk-3 competed with CMTM6 for PD-L1, thereby liberating PD-L1 from its complexation with CMTM6. The released PD-L1 immediately underwent endocytosis-mediated degradation. These results will enhance our understanding of not only the physiological nature of the extracellular REIC/Dkk-3 protein but also the Ad-REIC-mediated anticancer effects. KEY MESSAGES: • REIC/Dkk-3 protein effectively suppresses breast cancer progression through an acceleration of PD-L1 degradation. • PD-L1 stability on the cancer cell membrane is kept high by binding with mainly CMTM6. • Competitive binding of REIC/Dkk-3 protein with CMTM6 liberates PD-L1, leading to PD-L1 degradation.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
16.
Lung Cancer ; 178: 1-10, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36753780

RESUMO

OBJECTIVES: No immunotherapeutic protocol has yet been established in never-smoking patients with lung cancer harboring driver oncogenic mutations, such as epidermal growth factor receptor (EGFR) mutations. The immunostimulatory effect of Ad-REIC, a genetically engineered adenovirus vector expressing a tumor suppressor gene, reduced expression in immortalized cells (REIC), has been investigated in clinical trials for various solid tumors. However, the immunostimulatory effect of the Ad-REIC in EGFR-mutant lung cancer with a non-inflamed tumor microenvironment (TME) has not been explored. MATERIALS AND METHODS: We used a syngeneic mouse model developed by transplanting Egfr-mutant lung cancer cells into single or double flanks of C57BL/6J mice. Ad-SGE-REIC, a 2nd-generation vector with an enhancer sequence, was injected only into the tumors from one flank, and its antitumor effects were assessed. Tumor-infiltrating cells were evaluated using immunohistochemistry or flow cytometry. The synergistic effects of Ad-SGE-REIC and PD-1 blockade were also examined. RESULTS: Injection of Ad-SGE-REIC into one side of the tumor induced not only a local antitumor effect but also a bystander abscopal effect in the non-injected tumor, located on the other flank. The number of PD-1+CD8+ T cells increased in both injected and non-injected tumors. PD-1 blockade augmented the local and abscopal antitumor effects of Ad-SGE-REIC by increasing the number of CD8+ T cells in the TME of Egfr-mutant tumors. Depletion of CD8+ cells reverted the antitumor effect, suggesting they contribute to antitumor immunity. CONCLUSION: Ad-SGE-REIC induced systemic antitumor immunity by modifying the TME status from non-inflamed to inflamed, with infiltration of CD8+ T cells. Additionally, in Egfr-mutant lung cancer, this effect was enhanced by PD-1 blockade. These findings pave the way to establish a novel combined immunotherapy strategy with Ad-SGE-REIC and anti-PD-1 antibody for lung cancer with a non-inflamed TME.


Assuntos
Neoplasias Pulmonares , Animais , Camundongos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Linfócitos T CD8-Positivos/patologia , Proteínas Adaptadoras de Transdução de Sinal , Camundongos Endogâmicos C57BL , Receptores ErbB/genética , Linhagem Celular Tumoral , Microambiente Tumoral
17.
Front Oncol ; 13: 1142886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910659

RESUMO

Background: EMT has been proposed to be a crucial early event in cancer metastasis. EMT is rigidly regulated by the action of several EMT-core transcription factors, particularly ZEB1. We previously revealed an unusual role of ZEB1 in the S100A8/A9-mediated metastasis in breast cancer cells that expressed ZEB1 at a significant level and showed that the ZEB1 was activated on the MCAM-downstream pathway upon S100A8/A9 binding. ZEB1 is well known to require Zn2+ for its activation based on the presence of several Zn-finger motifs in the transcription factor. However, how Zn2+-binding works on the pleiotropic role of ZEB1 through cancer progression has not been fully elucidated. Methods: We established the engineered cells, MDA-MB-231 MutZEB1 (MDA-MutZEB1), that stably express MutZEB1 (ΔZn). The cells were then evaluated in vitro for their invasion activities. Finally, an RNA-Seq analysis was performed to compare the gene alteration profiles of the established cells comprehensively. Results: MDA-MutZEB1 showed a significant loss of the EMT, ultimately stalling the invasion. Inclusive analysis of the transcription changes after the expression of MutZEB1 (ΔZn) in MDA-MB-231 cells revealed the significant downregulation of LOX family genes, which are known to play a critical role in cancer metastasis. We found that LOXL1 and LOXL4 remarkably enhanced cancer invasiveness among the LOX family genes with altered expression. Conclusions: These findings indicate that ZEB1 potentiates Zn2+-mediated transcription of plural EMT-relevant factors, including LOXL1 and LOXL4, whose upregulation plays a critical role in the invasive dissemination of breast cancer cells.

18.
Front Oncol ; 13: 1142907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091157

RESUMO

Background: LOX family members are reported to play pivotal roles in cancer. Unlike their enzymatic activities in collagen cross-linking, their precise cancer functions are unclear. We revealed that LOXL4 is highly upregulated in breast cancer cells, and we thus sought to define an unidentified role of LOXL4 in breast cancer. Methods: We established the MDA-MB-231 sublines MDA-MB-231-LOXL4 mutCA and -LOXL4 KO, which stably overexpress mutant LOXL4 that loses its catalytic activity and genetically ablates the intrinsic LOXL4 gene, respectively. In vitro and in vivo evaluations of these cells' activities of cancer outgrowth were conducted by cell-based assays in cultures and an orthotopic xenograft model, respectively. The new target (s) of LOXL4 were explored by the MS/MS analytic approach. Results: Our in vitro results revealed that both the overexpression of mutCA and the KO of LOXL4 in cells resulted in a marked reduction of cell growth and invasion. Interestingly, the lowered cellular activities observed in the engineered cells were also reflected in the mouse model. We identified a novel binding partner of LOXL4, i.e., annexin A2. LOXL4 catalyzes cell surface annexin A2 to achieve a cross-linked multimerization of annexin A2, which in turn prevents the internalization of integrin ß-1, resulting in the locking of integrin ß-1 on the cell surface. These events enhance the promotion of cancer cell outgrowth. Conclusions: LOXL4 has a new role in breast cancer progression that occurs via an interaction with annexin A2 and integrin ß-1 on the cell surface.

19.
Biomed Pharmacother ; 155: 113733, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271542

RESUMO

Pancreatic cancer is recalcitrant to treatment as it is highly metastatic and rapidly progressive. While observing the behavior of human pancreatic BxPC-3 cells using an optical assay device called TAXIScan, we found that several synthetic pyrazole and pyrimidine derivatives inhibited cell migration. One such compound, 14-100, inhibited metastasis of fluorescence-labeled BxPC-3 cells, which were transplanted into the pancreas of nude mice as a subcutaneously grown cancer fragment. Surprisingly, despite its low cytotoxicity, the compound also showed an inhibitory effect on cancer cell proliferation in vivo, suggesting that the compound alters cancer cell characteristics needed to grow in situ. Single-cell RNA-sequencing revealed changes in gene expression associated with metastasis, angiogenesis, inflammation, and epithelial-mesenchymal transition. These data suggest that the compound 14-100 could be a good drug candidate against pancreatic cancer.


Assuntos
Quimiotaxia , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Camundongos Nus , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Transformação Celular Neoplásica , Pirazóis/farmacologia , Pirazóis/uso terapêutico , RNA , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Neoplasias Pancreáticas
20.
Anticancer Res ; 41(10): 4837-4855, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34593432

RESUMO

BACKGROUND/AIM: The adenovirus vector- carrying reduced expression in immortalized cell (REIC) gene (Ad-REIC) increases endoplasmic reticulum stress chaperone GRP78/BiP expression and induces the JNK-mediated apoptotic pathway. We aimed to determine whether Ad-REIC-induced apoptotic cell death can trigger immunogenic cell death (ICD). MATERIALS AND METHODS: We examined the emission of damage-associated molecular patterns in vitro and the vaccination effect in vivo. We determined the immunological changes in the tumour microenvironment by putative ICD inducers and the combined effects of immune checkpoint blockade therapies. RESULTS: Ad-REIC induced the release of high-mobility group box 1 and adenosine triphosphate and the translocation of calreticulin in murine mesothelioma AB12 cells. The vaccination effect was elicited by Ad-REIC treatment in vivo. The effect of Ad-REIC was potentiated by anti-cytotoxic T-lymphocyte-associated protein 4 antibody treatment in a murine mesothelioma AB1-HA cell model. CONCLUSION: Ad-REIC induces ICD in malignant mesothelioma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Morte Celular Imunogênica/efeitos dos fármacos , Mesotelioma Maligno/terapia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Trifosfato de Adenosina/metabolismo , Adenoviridae/genética , Animais , Apoptose/efeitos dos fármacos , Antígenos CD8/metabolismo , Calreticulina/metabolismo , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Terapia Combinada , Chaperona BiP do Retículo Endoplasmático , Terapia Genética , Vetores Genéticos , Proteína HMGB1/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Mesotelioma Maligno/imunologia , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA