Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Inorg Chem ; 63(19): 8516-8520, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38667056

RESUMO

Related BAP [BAP = bis(acyl)phosphide] and Acac (Acac = ß-diketonate) molecules perform as robust supports for both lanthanide and actinide metals. Here, a molecular bimetallic Eu2+ complex was successfully targeted and isolated by employing sodium bis(mesitoyl)phosphide [Na(mesBAP)] in a salt metathesis with EuI2, producing [Eu(mesBAP)2(et2o)]2 (et2o = metal-coordinated diethyl ether). The corresponding Acac-Eu2+ complex was targeted using mesAcac- (1,3-dimesityl-1,3-propanedione), generating [Eu(mesAcac)2(et2o)]2. Both complexes were characterized by single-crystal X-ray diffraction, UV-vis, IR, and NMR spectroscopies, and variable-temperature magnetic susceptibility. [Eu(mesBAP)2(et2o)]2 was persistent under anaerobic, anhydrous conditions, whereas the analogous [Eu(mesAcac)2(et2o)]2 showed evidence of decomposition under identical conditions. Variable-temperature magnetic susceptibility and magnetization studies of [Eu(mesBAP)2(et2o)]2 and [Eu(mesAcac)2(et2o)]2 were performed, resulting in similar magnetic exchange coupling values of Jex = -0.018 and -0.023 cm-1 and axial zero-field-splitting D values of -0.38 and -0.51 cm-1, respectively.

2.
Inorg Chem ; 62(22): 8462-8466, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220066

RESUMO

The oxidative chlorination of the plutonium metal was achieved through a reaction with gallium(III) chloride (GaCl3). In DME (DME = 1,2-dimethoxyethane) as the solvent, substoichiometric (2.8 equiv) amounts of GaCl3 were added, which consumed roughly 60% of the plutonium metal over the course of 10 days. The salt species [PuCl2(dme)3][GaCl4] was isolated as pale-purple crystals, and both solid-state and solution UV-vis-NIR spectroscopies were consistent with the formation of a trivalent plutonium complex. The analogous reaction was performed with uranium metal, generating a dicationic trivalent uranium complex crystallized as the [UCl(dme)3][GaCl4]2 salt. The extraction of [UCl(dme)3][GaCl4]2 in DME at 70 °C followed by crystallization produced [{U(dme)3}2(µ-Cl3)][GaCl4]3, a product arising from the loss of GaCl3. This method of halogenation worked on a small scale for plutonium and uranium, providing a route to cationic Pu3+ and dicationic U3+ complexes using GaCl3 in DME.

3.
Inorg Chem ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851526

RESUMO

Gallium trichloride (GaCl3) was used as a solvent for the oxidative dissolution of the lanthanide (Ln) metals cerium (Ce) and holmium (Ho). Reactions were performed at temperatures above 100 °C in sealed vessels to maintain the liquid phase for GaCl3 during the oxidizing reactions. The best results were obtained from reactions using 8 equiv of GaCl3 to metal where the inorganic complexes [Ga][Ln(GaCl4)4] [Ln = Ce (1), Ho (2)] could be isolated. Recrystallization of 1 and 2 employing fluorobenzene (C6H5F) produced [Ga(η6-C6H5F)2][Ln(GaCl4)4] [Ln = Ce (3), Ho (4)] where reversible η6 coordination of C6H5F to [Ga]+ was observed. All complexes were characterized through elemental analysis (F and Cl), IR and UV-vis-near-IR spectroscopies, and both solution and solid-state NMR techniques.

4.
Chemistry ; 28(27): e202200114, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35286723

RESUMO

A method to explore head-to-head ϕ back-bonding from uranium f-orbitals into allyl π* orbitals has been pursued. Anionic allyl groups were coordinated to uranium with tethered anilide ligands, then the products were investigated by using NMR spectroscopy, single-crystal XRD, and theoretical methods. The (allyl)silylanilide ligand, N-((dimethyl)prop-2-enylsilyl)-2,6-diisopropylaniline (LH), was used as either the fully protonated, singly deprotonated, or doubly deprotonated form, thereby highlighting the stability and versatility of the silylanilide motif. A free, neutral allyl group was observed in UI2 (L1)2 (1), which was synthesized by using the mono-deprotonated ligand [K][N-((dimethyl)prop-2-enyl)silyl)-2,6-diisopropylanilide] (L1). The desired homoleptic sandwich complex U[L2]2 (2) was prepared from all three ligand precursors, but the most consistent results came from using the dipotassium salt of the doubly deprotonated ligand [K]2 [N-((dimethyl)propenidesilyl)-2,6-diisopropylanilide] (L2). This allyl-based sandwich complex was studied by using theoretical techniques with supporting experimental spectroscopy to investigate the potential for phi (ϕ) back-bonding. The bonding between UIV and the allyl fragments is best described as ligand-to-metal electron donation from a two carbon fragment-localized electron density into empty f-orbitals.

5.
Inorg Chem ; 61(46): 18466-18475, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36331515

RESUMO

A series of bis(acyl)phosphide-supported Eu complexes were synthesized (bis(acyl)phosphide = BAP). In this study, BAP ligands proved to be excellent ligands for the synthesis of both Eu3+ and Eu2+ molecular complexes. Sodium bis(mesitoyl)phosphide (Na(mesBAP)) and sodium bis(2,4,6-triisopropylbenzoyl)phosphide (Na(trippBAP)) were employed as ligand precursors for the synthesis of the Eu3+ complexes Eu(bis(mesitoyl)phosphide)3(thf)2 (Eu(mesBAP)3(thf)2) and Eu(bis(2,4,6-triisopropylbenzoyl)phosphide)3 (Eu(trippBAP)3), as well as the Eu2+ complex, Eu(bis(2,4,6-triisopropylbenzoyl)phosphide)2(dme)2 (Eu(trippBAP)2(dme)2) (thf = tetrahydrofuran, dme = 1,2-dimethoxyethane). All complexes were characterized using a combination of UV-vis-NIR-IR and NMR spectroscopies, and single-crystal X-ray diffraction (SC-XRD). The magnetic properties of these three monomeric Eu complexes were investigated by variable-temperature magnetic susceptibility. The magnetic data are typical for these ions, with Eu(trippBAP)2(dme)2 displaying Curie-type behavior. Both Eu(trippBAP)3 and Eu(mesBAP)3(thf)2 possess similar 7F0-7F1 spin-orbit energy gaps and a similar zero-field splitting of the 7F1 state.

6.
Inorg Chem ; 61(32): 12508-12517, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905438

RESUMO

The first uranium bis(acyl)phosphide (BAP) complexes were synthesized from the reaction between sodium bis(mesitoyl)phosphide (Na(mesBAP)) or sodium bis(2,4,6-triisopropylbenzoyl)phosphide (Na(trippBAP)) and UI3(1,4-dioxane)1.5. Thermally stable, homoleptic BAP complexes were characterized by single-crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy, when appropriate, for the elucidation of the electronic structure and bonding of these complexes. EPR spectroscopy revealed that the BAP ligands on the uranium center retain a significant amount of electron density. The EPR spectrum of the trivalent U(trippBAP)3 has a rhombic signal near g = 2 (g1 = 2.03; g2 = 2.01; and g3 = 1.98) that is consistent with the EPR-observed unpaired electron being located in a molecular orbital that appears ligand-derived. However, upon warming the complex to room temperature, no resonance was observed, indicating the presence of uranium character.


Assuntos
Urânio , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Moleculares , Sódio , Urânio/química
7.
Inorg Chem ; 60(4): 2740-2748, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33539075

RESUMO

Reaction of 3 equiv of NaNR2 (R = SiMe3) with NpCl4(DME)2 in THF afforded the Np(IV) silylamide complex, [Np(NR2)3Cl] (1), in good yield. Reaction of 1 with 1.5 equiv of KC8 in THF, in the presence of 1 equiv of dibenzo-18-crown-6, resulted in formation of [{K(DB-18-C-6)(THF)}3(µ3-Cl)][Np(NR2)3Cl]2 (4), also in good yield. Complex 4 represents the first structurally characterized Np(III) amide. Finally, reaction of NpCl4(DME)2 with 5 equiv of NaNR2 and 1 equiv of dibenzo-18-crown-6 afforded the Np(IV) bis(metallacycle), [{Na(DB-18-C-6)(Et2O)0.62(κ1-DME)0.38}2(µ-DME)][Np{N(R)(SiMe2CH2)}2(NR2)]2 (8), in moderate yield. Complex 8 was characterized by 1H NMR spectroscopy and X-ray crystallography and represents a rare example of a structurally characterized neptunium-hydrocarbyl complex. To support these studies, we also synthesized the uranium analogues of 4 and 8, namely, [K(2,2,2-cryptand)][U(NR2)3Cl] (2), [K(DB-18-C-6)(THF)2][U(NR2)3Cl] (3), [Na(DME)3][U{N(R)(SiMe2CH2)}2(NR2)] (6), and [{Na(DB-18-C-6)(Et2O)0.5(κ1-DME)0.5}2(µ-DME)][U{N(R)(SiMe2CH2)}2(NR2)]2 (7). Complexes 2, 3, 6, and 7 were characterized by a number of techniques, including NMR spectroscopy and X-ray crystallography.

8.
Inorg Chem ; 59(13): 8642-8646, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32623892

RESUMO

With the advent of lanthanide-based technologies, there is a clear need to advance the fundamental understanding of 4f-element chelation chemistry. Herein, we contribute to a growing body of lanthanide chelation chemistry and report the synthesis of bimetallic 4f-element complexes within an imine/hemiacetalate framework, Ln2TPTOMe [Ln = lanthanide; TPTOMe = tris(pyridineimine)(Tren)tris(methoxyhemiacetalate); Tren = tris(2-aminoethylamine)]. These products are generated from hydrolysis and methanolysis of the cage ligand tris(pyridinediimine)bis(Tren) (TPT; Tadanobu et al. Chem. Lett. 1993, 22 (5), 859-862) likely facilitated by inductive effects stemming from the Lewis acidic lanthanide cations. These complexes are interesting because they result from imine cleavage to generate two metal binding sites: one pocketed site within the macrocycle and the other terminal site capping a hemiacetalate moiety. A clear demarcation in reactivity is observed between samarium and europium, where the lighter and larger lanthanides generate a mixture of products, Ln2TPTOMe and LnTPT. Meanwhile, the heavier and smaller lanthanides generate exclusively bimetallic Ln2TPTOMe. The cleavage reactivity to form Ln2TPTOMe was extended beyond methanol to include other primary alcohols.

9.
Chemistry ; 25(45): 10557-10560, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31067342

RESUMO

A robust and rapid manganese formic acid (FA) dehydrogenation catalyst is reported. The manganese is supported by the recently developed, hybrid backbone chelate ligand tBu PNNOP (tBu PNNOP=2,6-(di-tert-butylphosphinito)(di-tert-butylphosphinamine)pyridine) (1) and the catalyst is readily prepared with MnBrCO5 to form [(tBu PNNOP)Mn(CO)2 ][Br] (2). Dehydrohalogenation of 2 generated the neutral five coordinate complex (tBu PNNOP)Mn(CO)2 (3). Dehydrogenation of FA by 2 and 3 was found to be highly efficient, exhibiting turnover frequencies (TOFs) exceeding 8500 h-1 , rivaling many noble metal systems. The parent chelate, tBu PONOP (tBu PONOP=2,6-bis(di-tert-butylphosphinito)pyridine) or tBu PNNNP (tBu PNNNP=2,6-bis (di-tert-butylphosphinamine)pyridine), coordination complexes of Mn were synthesized, respectively affording [(tBu PONOP)Mn(CO)2 ][Br] (4) and [(tBu PNNNP)Mn(CO)2 ][Br] (5). FA dehydrogenation with the hybrid-ligand supported 2 exhibits superior catalysis to 4 and 5.

10.
Inorg Chem ; 57(16): 9634-9643, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29620870

RESUMO

A series of pyridine(diimine)iron tetrazene compounds, (iPrPDI)Fe[(NR)NN(NR)] [iPrPDI = 2,6-(ArN = CMe)2C5H3N; Ar = 2,6-iPr2C6H3] has been prepared either by the addition of 2 equiv of an organic azide, RN3, to the corresponding iron bis(dinitrogen) compound, (iPrPDI)Fe(N2)2 or by the addition of azide to the iron imide derivatives, (iPrPDI)FeNR. The electronic structures of these compounds were determined using a combination of metrical parameters from X-ray diffraction, solution and solid-state magnetic measurements, zero-field 57Fe Mössbauer and 1H NMR spectroscopies, and density functional theory calculations. The overall electronic structure of the iron tetrazene compounds is sensitive to the nature of the tetrazene nitrogen substituent with three distinct classes of compounds identified: (i) overall diamagnetic ( S = 0) compounds arising from intermediate-spin iron(II) centers ( SFe = 1) engaged in antiferromagnetic coupling with both pyridine(diimine) and tetrazene radical anions ( SPDI = -1/2 and Stetrazene = -1/2; R = 2-adamantyl, cyclooctyl, benzyl); (ii) overall S = 1 compounds best described as intermediate-spin iron(III) ( SFe = 3/2) derivatives engaged in antiferromagnetic coupling with a pyridine(diimine) radical anion ( SPDI = -1/2; R = 3,5-Me2C6H3, 4-MeC6H4); (iii) overall S = 2 compounds best described as high-spin iron(III) centers ( SFe = 5/2) engaged in antiferromagnetic coupling to a pyridine(diimine) radical anion ( SPDI = -1/2; R = 1-adamantyl). For both the intermediate- and high-spin ferric cases, the tetrazene ligand adopts the closed-shell, dianionic form, [N4R2]2-. For the case where R = SiMe3, spin-crossover behavior is observed, arising from a spin-state change from intermediate- to high-spin iron(III).

11.
Inorg Chem ; 57(14): 8106-8115, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29975519

RESUMO

A series of uranium amides were synthesized from N, N, N-cyclohexyl(trimethylsilyl)lithium amide [Li][N(TMS)Cy] and uranium tetrachloride to give U(NCySiMe3) x(Cl)4- x, where x = 2, 3, or 4. The diamide was isolated as a bimetallic, bridging lithium chloride adduct ((UCl2(NCyTMS)2)2-LiCl(THF)2), and the tris(amide) was isolated as the lithium chloride adduct of the monometallic species (UCl(NCyTMS)3-LiCl(THF)2). The tetraamide complex was isolated as the four-coordinate pseudotetrahedron. Cyclic voltammetry revealed an easily accessible reversible oxidation wave, and upon chemical oxidation, the UV amido cation was isolated in near-quantitative yields. The synthesis of this family of compounds allows a direct comparison of the electronic structure and properties of isostructural UIV and UV tetraamide complexes. Spectroscopic investigations consisting of UV-vis, NIR, MCD, EPR, and U L3-edge XANES, along with density functional and wave function calculations, of the four-coordinate UIV and UV complexes have been used to understand the electronic structure of these pseudotetrahedral complexes.

12.
Chemistry ; 23(55): 13617-13622, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28812322

RESUMO

The coordination of tBu PONOP (tBu PONOP=2,6-bis(ditert-butylphosphinito)pyridine) to different ruthenium starting materials, to generate (tBu PONOP)RuCl2 , was investigated. The resultant (tBu PONOP)RuCl2 reactivity with three different silanes was then investigated and contrasted dramatically with the reactivity of (iPr PONOP)RuCl2 (DMSO) (iPr PONOP=2,6-bis(diisopropylphosphinito)pyridine) with the same silanes. The 16-electron species (tBu PONOP)Ru(H)Cl was produced from the reaction of triethylsilane with (tBu PONOP)RuCl2 . Reactions of (tBu PONOP)RuCl2 with both phenylsilane or diphenylsilane afforded the 16-electron hydrido-silyl species (tBu PONOP)Ru(H)(PhSiCl2 ) and (tBu PONOP)Ru(H)(Ph2 SiCl), respectively. Reactions of all three of these complexes with silver triflate afforded the simple salt metathesis products of (tBu PONOP)Ru(H)(OTf), (tBu PONOP)Ru(H)(PhSiCl(OTf)), and (tBu PONOP)Ru(H)(Ph2 Si(OTf)). Formic acid dehydrogenation was performed in the presence of triethylamine (TEA), and each species proved competent for gas-pressure generation of CO2 and H2 . The hydride species (tBu PONOP)Ru(H)Cl, (tBu PONOP)Ru(H)(OTf), and (tBu PONOP)Ru(H)(PhSiCl2 ) exhibited faster catalytic activity than the other compounds tested.

13.
Angew Chem Int Ed Engl ; 56(27): 7948-7951, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28505382

RESUMO

Phosphinidenes [R-P] are convenient P1 building blocks for the synthesis of a plethora of organophosphorus compounds. Thus far, transition-metal-complexed phosphinidenes have been used for their singlet ground-state reactivity to promote selective addition and insertion reactions. One disadvantage of this approach is that after transfer of the P1 moiety to the substrate, a challenging demetallation step is required to provide the free phosphine. We report a simple method that enables the Lewis acid promoted transfer of phenylphosphinidene, [PhP], from NHC=PPh adducts (NHC=N-heterocyclic carbene) to various substrates to produce directly uncoordinated phosphorus heterocycles that are difficult to obtain otherwise.

14.
Inorg Chem ; 55(11): 5534-9, 2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27219499

RESUMO

We have synthesized a rare example of a uranium(IV) stannyl (κ(4)-N(CH2CH2NSi((i)Pr)3)3U(SnMe3), 1) via transmetalation with LiSnMe3. This complex has been characterized crystallographically and shown to have a U-Sn bond length of 3.3130(3) Å, substantially longer than the only other crystallographically observed U-Sn bond (3.166 Å). Computational studies suggest that the U-Sn bond in 1 is highly polarized, with significant charge transfer to the stannylate ligand. We briefly discuss plausible mechanistic scenarios for the formation of 1, which may be relevant to other transmetalation processes involving heavy main group atoms. Furthermore, we demonstrate the reducing ability of [SnMe3](-) in the absence of strongly donating ligands on U(IV).

15.
Organometallics ; 43(12): 1329-1333, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38938898

RESUMO

A series of U(IV) complexes bearing alkyl and chloride ligands in the trans configuration was synthesized and characterized. Starting with the diastereopure U(IV) trans-dichloride complex meso-( tBu2PONO)UCl2(dtbpy) (1, tBu2PONO = 2,6-bis((di-tert-butylphosphino)methanolato)pyridine), four distinct alkyl groups were employed to prepare ( tBu2PONO)U(R)Cl(dtbpy), where R = (trimethylsilyl)methyl (neosilyl), 2a, R = 2,2-dimethyl propyl (neopentyl), 2b, and R = 2-methyl-2-phenyl propyl (neophyl), 2c. Alkylation occurs with specificity but generates a predominant species and a minor species corresponding to anti/syn regioisomers relative to the tBu2P groups of the ligand. For synthesis using R = methyl, the dimethyl complex ( tBu2PONO)U(Me)2(dtbpy), 2d, was prepared; the addition of 1 equiv of MeLi produced a mixture of products. Complexes 2a-2d were characterized using single crystal X-ray diffraction (SC-XRD), UV-vis-nIR, and 1H and 31P NMR spectroscopies.

16.
Inorg Chem ; 52(2): 635-46, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23268722

RESUMO

Oxidation and reduction of the bis(imino)pyridine iron dinitrogen compound, ((iPr)PDI)FeN(2) ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N) has been examined to determine whether the redox events are metal or ligand based. Treatment of ((iPr)PDI)FeN(2) with [Cp(2)Fe][BAr(F)(4)] (BAr(F)(4) = B(3,5-(CF(3))(2)-C(6)H(3))(4)) in diethyl ether solution resulted in N(2) loss and isolation of [((iPr)PDI)Fe(OEt(2))][BAr(F)(4)]. The electronic structure of the compound was studied by SQUID magnetometry, X-ray diffraction, EPR and zero-field (57)Fe Mössbauer spectroscopy. These data, supported by computational studies, established that the overall quartet ground state arises from a high spin iron(II) center (S(Fe) = 2) antiferromagnetically coupled to a bis(imino)pyridine radical anion (S(PDI) = 1/2). Thus, the oxidation event is principally ligand based. The one electron reduction product, [Na(15-crown-5)][((iPr)PDI)FeN(2)], was isolated following addition of sodium naphthalenide to ((iPr)PDI)FeN(2) in THF followed by treatment with the crown ether. Magnetic, spectroscopic, and computational studies established a doublet ground state with a principally iron-centered SOMO arising from an intermediate spin iron center and a rare example of trianionic bis(imino)pyridine chelate. Reduction of the iron dinitrogen complex where the imine methyl groups have been replaced by phenyl substituents, ((iPr)BPDI)Fe(N(2))(2) resulted in isolation of both the mono- and dianionic iron dinitrogen compounds, [((iPr)BPDI)FeN(2)](-) and [((iPr)BPDI)FeN(2)](2-), highlighting the ability of this class of chelate to serve as an effective electron reservoir to support neutral ligand complexes over four redox states.


Assuntos
Elétrons , Iminas/química , Quelantes de Ferro/química , Ferro/química , Nitrogênio/química , Piridinas/química , Ânions , Estrutura Molecular , Oxirredução , Teoria Quântica , Espectroscopia de Mossbauer
17.
ACS Org Inorg Au ; 3(4): 199-208, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37545657

RESUMO

Organophosphorus nerve agents (OPAs) are a toxic class of synthetic compounds that cause adverse effects with many biological systems. Development of methods for environmental remediation and passivation has been ongoing for years. However, little progress has been made in therapeutic development for exposure victims. Given the postexposure behavior of OPA materials in enzymes such as acetylcholinesterase (AChE), development of electrophilic compounds as therapeutics may be more beneficial than the currently employed nucleophilic countermeasures. In this report, we present our studies with an electrophilic, 16-electron manganese complex (iPrPNP)Mn(CO)2 (1) and the nucleophilic hydroxide derivative (iPrPNHP)Mn(CO)2(OH) (2). The reactivity of 1 with phosphorus acids and the reactivity of 2 with the P-F bond of diisopropylfluorophosphate (DIPF) were studied. The role of water in both nucleophilic and electrophilic reactivity was investigated with the use of 17O-labeled water. Promising results arising from reactions of both 1 and 2 with organophosphorus substrates are reported.

18.
Inorg Chem ; 50(20): 9888-95, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21667935

RESUMO

The oxidation and reduction of a redox-active aryl-substituted bis(imino)pyridine iron dicarbonyl has been explored to determine whether electron-transfer events are ligand- or metal-based or a combination of both. A series of bis(imino)pyridine iron dicarbonyl compounds, [((iPr)PDI)Fe(CO)(2)](-), ((iPr)PDI)Fe(CO)(2), and [((iPr)PDI)Fe(CO)(2)](+) [(iPr)PDI = 2,6-(2,6-(i)Pr(2)C(6)H(3)N═CMe)(2)C(5)H(3)N], which differ by three oxidation states, were prepared and the electronic structures evaluated using a combination of spectroscopic techniques and, in two cases, [((iPr)PDI)Fe(CO)(2)](+) and [((iPr)PDI)Fe(CO)(2)], metrical parameters from X-ray diffraction. The data establish that the cationic iron dicarbonyl complex is best described as a low-spin iron(I) compound (S(Fe) = ½) with a neutral bis(imino)pyridine chelate. The anionic iron dicarbonyl, [((iPr)PDI)Fe(CO)(2)](-), is also best described as an iron(I) compound but with a two-electron-reduced bis(imino)pyridine. The covalency of the neutral compound, ((iPr)PDI)Fe(CO)(2), suggests that both the oxidative and reductive events are not ligand- or metal-localized but a result of the cooperativity of both entities.

19.
J Am Chem Soc ; 132(42): 15046-59, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20882992

RESUMO

A family of cationic, neutral, and anionic bis(imino)pyridine iron alkyl complexes has been prepared, and their electronic and molecular structures have been established by a combination of X-ray diffraction, Mössbauer spectroscopy, magnetochemistry, and open-shell density functional theory. For the cationic complexes, [((iPr)PDI)Fe-R][BPh(4)] ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)N═CMe)(2)C(5)H(3)N; R = CH(2)SiMe(3), CH(2)CMe(3), or CH(3)), which are known single-component ethylene polymerization catalysts, the data establish high spin ferrous compounds (S(Fe) = 2) with neutral, redox-innocent bis(imino)pyridine chelates. One-electron reduction to the corresponding neutral alkyls, ((iPr)PDI)Fe(CH(2)SiMe(3)) or ((iPr)PDI)Fe(CH(2)CMe(3)), is chelate-based, resulting in a bis(imino)pyridine radical anion (S(PDI) = 1/2) antiferromagnetically coupled to a high spin ferrous ion (S(Fe) = 2). The neutral neopentyl derivative was reduced by an additional electron and furnished the corresponding anion, [Li(Et(2)O)(3)][((iPr)PDI)Fe(CH(2)CMe(3))N(2)], with concomitant coordination of dinitrogen. The experimental and computational data establish that this S = 0 compound is best described as a low spin ferrous compound (S(Fe) = 0) with a closed-shell singlet bis(imino)pyridine dianion (S(PDI) = 0), demonstrating that the reduction is ligand-based. The change in field strength of the bis(imino)pyridine coupled with the placement of the alkyl ligand into the apical position of the molecule induced a spin state change at the iron center from high to low spin. The relevance of the compounds and their electronic structures to olefin polymerization catalysis is also presented.


Assuntos
Etilenos/química , Compostos de Ferro/química , Polímeros/química , Piridinas/química , Ânions , Cátions , Oxirredução
20.
Inorg Chem ; 48(9): 4190-200, 2009 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-19035761

RESUMO

Sodium amalgam reduction of the aryl-substituted bis(imino)pyridine iron dibromide complex, ((Et)PDI)FeBr2 ((Et)PDI = 2,6-(2,6-Et2-C6H3N=CMe)2C5H3N), under a dinitrogen atmosphere in pentane furnished the bis(chelate)iron compound, ((Et)PDI)2Fe. Characterization by X-ray crystallography established a distorted four-coordinate iron center with two kappa2-bis(imino)pyridine ligands. Reducing the steric demands of the imine substituent to either a less sterically encumbered aryl ring (e.g., C6H4-4-OMe) or an alkyl group (e.g., Cy, iPr, cis-myrtanyl) also yielded bis(chelate) compounds from sodium amalgam reduction of the corresponding dihalide. Characterization of the compounds with smaller imine substituents by X-ray diffraction established six-coordinate, pseudo-octahedral compounds. In one case, a neutral bis(chelate)iron compound was prepared by reduction of the corresponding iron dication, [(PDI)2Fe]2+, providing chemical confirmation of electrochemically generated species that were previously reported as too reducing to isolate. Magnetic measurements, metrical parameters from X-ray structures, Mössbauer spectroscopy, and open-shell, broken symmetry DFT calculations were used to establish the electronic structure of both types (four- and six-coordinate) of neutral bis(chelate) compounds. The experimentally observed S = 1 compounds are best described as having high-spin ferrous (S(Fe) = 2) centers antiferromagnetically coupled to two bis(imino)pyridine radical anions. Thus, the two-electron reduction of the diamagnetic, low-spin complex [(PDI)2Fe]2+ to [(PDI)2Fe] is ligand-based with a concomitant spin change at iron.


Assuntos
Cristalografia por Raios X , Iminas/química , Compostos de Ferro/química , Piridinas/química , Teoria Quântica , Brometos/síntese química , Brometos/química , Simulação por Computador , Iminas/síntese química , Compostos de Ferro/síntese química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Nitrogênio/química , Oxirredução , Pentanos/síntese química , Pentanos/química , Piridinas/síntese química , Espectroscopia de Mossbauer
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA